Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1971, 36, 599-617
https://doi.org/10.1135/cccc19710599

Full configuration interaction for the π-electronic model of benzene. I. General expressions for singlets

J. Čížek, J. Paldus, L. Šroubková and J. Vojtík

Crossref Cited-by Linking

  • Sengupta S., Paldus J., C̆íz̆ek J.: Geminal Localization in the Separated-Pair Model II. Excited States of the Φ-Electronic Model of Benzene. Int. J. Quantum Chem. 2009, 6, 153. <https://doi.org/10.1002/qua.560060617>
  • Paldus J., Čižek J., HubaČ I.: Correlation effects in the low-lying excited states of the PPP models of alternant hydrocarbons. II. State correlation diagrams. Int. J. Quantum Chem. 2009, 8, 293. <https://doi.org/10.1002/qua.560080834>
  • Bracken Paul, Čı́žek Jiri: Reconstruction of secular polynomials for Hubbard model from energy perturbation series for weak and strong coupling cases. Journal of Mathematical Physics 1997, 38, 5493. <https://doi.org/10.1063/1.532179>
  • Förner Wolfgang: Comparative application of different approaches for band structure calculations on polyparaphenylene in the Pariser-Parr-Pople model: II. Møller-Plesset and coupled cluster methods. Phys. Scr. 1997, 56, 506. <https://doi.org/10.1088/0031-8949/56/5/018>
  • Bracken P., ?�?ek J.: Interpolant polynomial technique applied to the PPP model. I. Asymptotics for excited states of cyclic polyenes in the finite cyclic Hubbard model. Int. J. Quantum Chem. 1996, 57, 1019. <https://doi.org/10.1002/(SICI)1097-461X(1996)57:6<1019::AID-QUA1>3.0.CO;2-W>
  • ?�?ek J., Bracken P.: Interpolant polynomial technique applied to the PPP model. II. Testing the interpolant technique on the Hubbard model. Int. J. Quantum Chem. 1996, 57, 1033. <https://doi.org/10.1002/(SICI)1097-461X(1996)57:6<1033::AID-QUA2>3.0.CO;2-U>
  • Bracken P., Čížek J.: Investigation of the 1E states in cyclic polyenes. Int J of Quantum Chemistry 1995, 53, 467. <https://doi.org/10.1002/qua.560530503>
  • Gould M. D., Paldus J., čížek J.: Quasi‐Spin and the pseudo‐orthogonal group in the hubbard model. Int J of Quantum Chemistry 1994, 50, 207. <https://doi.org/10.1002/qua.560500306>
  • Bracken P., Čížek J.: Construction of interpolant polynomials for approximating eigenvalues of a hamiltonian which is dependent on a coupling parameter. Physics Letters A 1994, 194, 337. <https://doi.org/10.1016/0375-9601(94)91290-4>
  • Paldus J., Piecuch P.: Electron correlation in one dimension: Coupled cluster approaches to cyclic polyene π‐electron models. Int J of Quantum Chemistry 1992, 42, 135. <https://doi.org/10.1002/qua.560420110>
  • Vinette F.: Quasispin symmetry for the derivation of coupled cluster equations for the Hubbard model of benzene. Int J of Quantum Chemistry 1992, 42, 1737. <https://doi.org/10.1002/qua.560420611>
  • Piecuch Piotr, Paldus Josef: On the solution of coupled-cluster equations in the fully correlated limit of cyclic polyene model. Int. J. Quantum Chem. 1991, 40, 9. <https://doi.org/10.1002/qua.560400807>
  • Čížek J., Paldus J., Vinette F.: Explicit algebraic form of coupled cluster equations for the PPP model of benzene with an approximate inclusion of triexcited clusters. Int J of Quantum Chemistry 1990, 38, 831. <https://doi.org/10.1002/qua.560380606>
  • Piecuch Piotr, Zarrabian Sohrab, Paldus Josef, Čižek Jiří: Coupled-cluster approaches with an approximate account of triexcitations and the optimized-inner-projection technique. III. Lower bounds to the ground-state correlation energy of cyclic-polyene model systems. Phys. Rev. A 1990, 42, 5155. <https://doi.org/10.1103/PhysRevA.42.5155>
  • Piecuch Piotr, Zarrabian Sohrab, Paldus Josef, Čížek Jiří: Coupled-cluster approaches with an approximate account of triexcitations and the optimized-inner-projection technique. II. Coupled-cluster results for cyclic-polyene model systems. Phys. Rev. B 1990, 42, 3351. <https://doi.org/10.1103/PhysRevB.42.3351>
  • Takahashi M., Čížek J., Paldus J.: Determination of the radius of convergence of the perturbation expansion using Padé approximants: Application to the Hückel limit of the Hubbard model for finite cyclic polyenes. Phys. Rev. B 1986, 33, 1203. <https://doi.org/10.1103/PhysRevB.33.1203>
  • Hashimoto Katsufumi: Length dependence of the optical transition energies of the exactly solvable Hubbard model for linear polyenes. Int J of Quantum Chemistry 1985, 28, 581. <https://doi.org/10.1002/qua.560280505>
  • Paldus J., Takahashi M.: Bond length alternation in cyclic polyenes. IV. Finite‐order purturbation theory approach. Int J of Quantum Chemistry 1984, 25, 423. <https://doi.org/10.1002/qua.560250212>
  • Takahashi M., Paldus J.: Bond length alternation in cyclic polyenes. V. Local finite‐order perturbation theory approach. Int J of Quantum Chemistry 1984, 26, 349. <https://doi.org/10.1002/qua.560260305>
  • Fratev F., Enchev V., Karadakov P., Castan̄o O.: A classification of polyenes into 4L + 2‐ and 4L‐classes on the basis of Coulson's bond orders and information theory and its application to the interpretation of electrocyclic reactions. Int J of Quantum Chemistry 1984, 26, 993. <https://doi.org/10.1002/qua.560260605>
  • Paldus J., Takahashi M., Cho R. W. H.: Coupled-cluster approach to electron correlation in one dimension: Cyclic polyene model in delocalized basis. Phys. Rev. B 1984, 30, 4267. <https://doi.org/10.1103/PhysRevB.30.4267>
  • Paldus J., Chin E., Grey M. G.: Bond length alternation in cyclic polyenes. II. Unrestricted hartree–fock method. Int J of Quantum Chemistry 1983, 24, 395. <https://doi.org/10.1002/qua.560240406>
  • Pauncz R., Paldus J.: Bond length alternation in cyclic polyenes. III. Alternant molecular orbital method. Int J of Quantum Chemistry 1983, 24, 411. <https://doi.org/10.1002/qua.560240407>
  • Takahashi M., Paldus J., Čížek J.: Perturbation theory and electron correlation in extended systems: Cyclic polyene model. Int J of Quantum Chemistry 1983, 24, 707. <https://doi.org/10.1002/qua.560240614>
  • Paldus J., Boyle M. J.: Cluster analysis of the full configuration interaction wave functions of cyclic polyene models. Int J of Quantum Chemistry 1982, 22, 1281. <https://doi.org/10.1002/qua.560220611>
  • ČÍŽek J., Pellégatti A., Paldus J.: Correlation effects in the PPP model of alternant π‐electronic systems: two‐point Padé approximant approach. Int J of Quantum Chemistry 1975, 9, 987. <https://doi.org/10.1002/qua.560090607>
  • Čížek J., Paldus J., Hubač I.: Correlation effects in the low–lying excited states of the PPP models of alternant hydrocarbons. I. Qualitative rules for the effect of limited configuration interaction. Int J of Quantum Chemistry 1974, 8, 951. <https://doi.org/10.1002/qua.560080610>
  • Paldus J., Čížek J.: Green's function approach to the direct perturbation calculation of the excitation energies of closed shell fermion systems. The Journal of Chemical Physics 1974, 60, 149. <https://doi.org/10.1063/1.1680762>
  • Pellégatti A., Čížek J., Paldus J.: Convergence of the Rayleigh-Schrödinger perturbation expansions for the energy levels of the Pariser-Parr-Pople model of the benzene molecule. The Journal of Chemical Physics 1974, 60, 4825. <https://doi.org/10.1063/1.1680988>
  • Paldus J., Čížek J., Keating B. A.: Stability Conditions for Maximum-Overlap (Brueckner) Independent-Particle Wave Functions. Phys. Rev. A 1973, 8, 640. <https://doi.org/10.1103/PhysRevA.8.640>
  • Paldus J., Čížek J., Sengupta S.: Geminal Localization in the Separated-Pair π-Electronic Model of Benzene. The Journal of Chemical Physics 1971, 55, 2452. <https://doi.org/10.1063/1.1676433>