Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1979, 44, 652-659
https://doi.org/10.1135/cccc19790652

Kinetics of the carbon monoxide conversion with steam at elevated pressures

Pavel Fotta, Jan Vosolsoběb and Vladimír Glaserb

a Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 165 02 Prague 6-Suchdol
b Department of Organic Technology, Prague Institute of Chemical Technology, 166 28 Prague 6

Crossref Cited-by Linking

  • Lukashuk Liliana, van de Water Leon G.A., van Dijk H.A.J., Cobden Paul D., Dodds Deborah L., Hyde Timothy I., Watson Michael J.: A new application of the commercial high temperature water gas shift catalyst for reduction of CO2 emissions in the iron and steel industry: Lab-scale catalyst evaluation. International Journal of Hydrogen Energy 2021, 46, 39023. <https://doi.org/10.1016/j.ijhydene.2021.09.203>
  • Noor Tayyaba, Qi Yanying, Chen De: Hydrogen dependence of the reaction mechanism and kinetics of water gas shift reaction on Ni catalyst: Experimental and DFT study. Applied Catalysis B: Environmental 2020, 264, 118430. <https://doi.org/10.1016/j.apcatb.2019.118430>
  • Medina Oscar E., Gallego Jaime, Olmos Carol M., Chen Xiaowei, Cortés Farid B., Franco Camilo A.: Effect of Multifunctional Nanocatalysts on n-C7 Asphaltene Adsorption and Subsequent Oxidation under High-Pressure Conditions. Energy Fuels 2020, 34, 6261. <https://doi.org/10.1021/acs.energyfuels.0c00653>
  • Zhu Minghui, Wachs Israel E.: Iron-Based Catalysts for the High-Temperature Water–Gas Shift (HT-WGS) Reaction: A Review. ACS Catal. 2016, 6, 722. <https://doi.org/10.1021/acscatal.5b02594>
  • Sánchez J.M., Maroño M., Cillero D., Montenegro L., Ruiz E.: Laboratory- and bench-scale studies of a sweet water–gas-shift catalyst for H2 and CO2 production in pre-combustion CO2 capture. Fuel 2013, 114, 191. <https://doi.org/10.1016/j.fuel.2012.02.060>
  • Hla San Shwe, Morpeth L.D., Sun Y., Duffy G.J., Ilyushechkin A.Y., Roberts D.G., Edwards J.H.: A CeO2–La2O3-based Cu catalyst for the processing of coal-derived syngases via high-temperature water–gas shift reaction. Fuel 2013, 114, 178. <https://doi.org/10.1016/j.fuel.2012.06.115>
  • Hla San Shwe, Duffy G.J., Morpeth L.D., Cousins A., Roberts D.G., Edwards J.H.: Investigation into the performance of a Co–Mo based sour shift catalyst using simulated coal-derived syngases. International Journal of Hydrogen Energy 2011, 36, 6638. <https://doi.org/10.1016/j.ijhydene.2011.02.075>
  • Hla San Shwe, Duffy G.J., Morpeth L.D., Cousins A., Roberts D.G., Edwards J.H.: Investigation of the effect of total pressure on performance of the catalytic water–gas shift reaction using simulated coal-derived syngases. Catalysis Communications 2009, 11, 272. <https://doi.org/10.1016/j.catcom.2009.10.013>
  • Lei Yun, Cant Noel W., Trimm David L.: Kinetics of the water–gas shift reaction over a rhodium-promoted iron–chromium oxide catalyst. Chemical Engineering Journal 2005, 114, 81. <https://doi.org/10.1016/j.cej.2005.09.012>
  • J�?wiak W. K., Maniecki T. P., Basi?ska A., G�ralski J., Fiedorow R.: Reduction requirements for Ru/(K)Fe2O3 catalytic activity in water-gas shift reaction. Kinet Catal 2004, 45, 879. <https://doi.org/10.1007/s10975-005-0056-1>
  • Zhao Huanqi, Hu Yongqi, Li Jianjun: Reduced rate method for discrimination of the kinetic models for the water–gas shift reaction. Journal of Molecular Catalysis A: Chemical 1999, 149, 141. <https://doi.org/10.1016/S1381-1169(99)00163-6>
  • Keiski Riitta L., Salmi Tapio, Niemistö Pekka, Ainassaari Jorma, Pohjola Veikko J.: Stationary and transient kinetics of the high temperature water-gas shift reaction. Applied Catalysis A: General 1996, 137, 349. <https://doi.org/10.1016/0926-860X(95)00315-0>
  • Keiski Riitta L., Salmi Tapio, Pohjola Veikko J.: Development and verification of a simulation model for a non-isothermal water-gas shift reactor. The Chemical Engineering Journal 1992, 48, 17. <https://doi.org/10.1016/0300-9467(92)85003-R>
  • Salmi T., Lindfors L.-E., Boström S.: Modelling of the high temperature water gas shift reaction with stationary and transient experiments. Chemical Engineering Science 1986, 41, 929. <https://doi.org/10.1016/0009-2509(86)87177-9>
  • Chinchen G.C., Logan R.H., Spencer M.S.: Water-gas shift reaction over an iron oxide/chromium oxide catalyst. Applied Catalysis 1984, 12, 69. <https://doi.org/10.1016/S0166-9834(00)81505-5>