Collect. Czech. Chem. Commun. 1985, 50, 1714-1726
https://doi.org/10.1135/cccc19851714

Addition of primary alcohols to 3-chlorononafluoro-1,5-hexadiene and perfluoro-1,3,5-hexatriene

Václav Dědek, Igor Linhart and Milan Kováč

Department of Organic Chemistry, Prague Institute of Chemical Technology, 166 28 Prague 6

Abstract

Sodium alkoxide-catalyzed addition of methanol, ethanol and propanol to 3-chlorononafluoro-1,5-hexadiene (I) proceeds at temperatures -35 °C to 8 °C with allyl rearrangement, affording 1,6-dialkoxy-1,1,2,3,4,4,5,6,6-octafluoro-2,4-hexadiene (V) as the principal product, along with 1,6-dialkoxy-1,2,3,3,4,5,6,6-octafluoro-1,5-diene (VI) and trans-1,6-dialkoxy-1,1,2,3,4,4,5,6,6-nonafluoro-2-hexene (VII). The ethers Va-Vc consist of the cis,trans- and trans,trans-isomers in about 3 : 1 ratio, whereas the ethers VIa-VIc have trans,trans-configuration. Ethers Vc and VIc react with concentrated sulfuric acid to give dipropyl 2,3,4,5-tetrafluoro-2,4-hexadienedioate (IX) and dipropyl 2,3,4,4,5-pentafluoro-2-hexenedioate (X), respectively, whereas the ether VIIc affords a mixture of propyl 6-propyloxy-2,3,4,4,5,6-heptafluoro-2-hexenoate (XI) and ester X. Addition of methanol to perfluoro-1,3,5-hexatriene (II) affords 1,1,2,3,4,5,6,6-octafluoro-1,6-dimethoxy-3-hexene (XIII) as the principal product.