Collect. Czech. Chem. Commun. 2000, 65, 179-191
https://doi.org/10.1135/cccc20000179

Complexes of Light Lanthanides with 3,4-Dimethoxybenzoic Acid

Wiesława Ferenc* and Agnieszka Walków-Dziewulska

Department of Inorganic and General Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland

Abstract

The complexes of light lanthanides with 3,4-dimethoxybenzoic acid, Ln(C9H9O4)3·4 H2O, where Ln = La(III), Ce(III), Pr(III), Nd(III), Sm(III), Eu(III) and Gd(III), have been synthesized as polycrystalline solids and characterized by elemental analysis, IR spectroscopy, thermogravimetric and magnetic studies and X-ray diffraction measurements. The complexes possess colours typical of Ln(III) ions (La, Ce, Eu, Gd white, Pr greenish, Nd violet and Sm cream). The carboxylate group in these complexes binds as a symmetrical, bidentate chelating ligand. On heating in air to 1 273 K the 3,4-dimethoxybenzoates of Ce(III), Pr(III), Sm(III), Eu(III) and Gd(III) first dehydrate to anhydrous salts that further decompose to oxides of the respective metals. The 3,4-dimethoxybenzoates of La(III) and Nd(III) decompose in three steps. Firstly, they dehydrate to anhydrous salts that further decompose to the oxides with the intermediate formation of oxycarbonates. The solubilities of the studied complexes in water at 293 K is in the order of 10-4-10-3 mol dm-3. Their magnetic moments were determined in the temperature range 77-298 K and found to obey the Curie-Weiss law. The values of μeff calculated for the all compounds (except that for Eu) are close to those obtained for Ln(III) by Hund and van Vleck. The results show that there is no influence of the ligand field on 4f electrons of the lanthanide ions in these polycrystalline compounds; 4f electrons probably do not participate in the formation of the Ln-O bonds.

Keywords: 3,4-Dimethoxybenzoates; Light lanthanides; Thermal stability; Magnetic moments; Rare earth elements; Lanthanoids; IR spectroscopy; Powder X-ray diffraction.

References: 39 live references.