Collect. Czech. Chem. Commun.
2000, 65, 844-861
https://doi.org/10.1135/cccc20000844
Electrochemical Reduction of Allyl Ethers in the Presence of Nickel Complexes: A Review of Synthetic Applications
Sandra Oliveroa, Delphine Francoa, Jean-Claude Clinetb and Elisabet Duñacha,*
a Laboratoire de Chimie Bio-organique, associé au CNRS, Université de Nice-Sophia Antipolis, 06108 Nice cedex 2, France
b Institut de Chimie Moléculaire, associé au CNRS, Université Paris-Sud, 95405 Orsay, France
References
1. Nédélec J. Y., Périchon J., Troupel M. in: Organic Electroreductive Coupling Reactions Using Transition Metal Complexes as Catalyst, Topics in Current Chemistry (E. Steckhan, Ed.), p. 141. Springer, Berlin 1997.
2a. J. Organomet. Chem. 1980, 202, 435.
< M., Rollin Y., Sibille S., Fauvarque J. F., Périchon J.: https://doi.org/10.1016/S0022-328X(00)81872-0>
2b. New J. Chem. 1981, 5, 62.
M., Rollin Y., Périchon J., Fauvarque J. F.:
3a. Organometallics 1988, 7, 203.
C., Jutand A.:
3b. J. Electroanal. Chem. 1991, 306, 125.
< C., Jutand A.: https://doi.org/10.1016/0022-0728(91)85226-F>
4a. J. Organomet. Chem. 1984, 264, 273.
< J. F., Chevrot C., Jutand A., François M., Périchon J.: https://doi.org/10.1016/0022-328X(84)85153-0>
4b. New J. Chem. 1986, 10, 119.
J. F., Jutand A., François M.:
4c. J. Appl. Electrochem. 1988, 18, 109.
< J. F., Jutand A., François M.: https://doi.org/10.1007/BF01016213>
4d. J. Appl. Electrochem. 1988, 18, 116.
< J. F., Jutand A., François M.: https://doi.org/10.1007/BF01016214>
5a. J. Organomet. Chem. 1991, 56, 2018.
G., Rollin Y., Périchon J.:
5b. J. Org. Chem. 1993, 58, 2578.
< S., Clinet J. C., Duñach E., Périchon J.: https://doi.org/10.1021/jo00061a038>
6a. J. Org. Chem. 1989, 54, 2198.
< S., Sibille S., Périchon J.: https://doi.org/10.1021/jo00270a033>
6b. J. Org. Chem. 1990, 56, 2018.
< A., Sibille S., Périchon J.: https://doi.org/10.1021/jo00006a012>
7. J. Chem. Soc., Dalton Trans. 1978, 972.
< C., Healy K. P., Pletcher D.: https://doi.org/10.1039/dt9780000972>
8. J. Organomet. Chem. 1978, 161, 109.
< K. P., Pletcher D.: https://doi.org/10.1016/S0022-328X(00)80916-X>
9. J. Org. Chem. 1990, 55, 3897.
< M., Miyahara H., Moritani N., Sawaki Y.: https://doi.org/10.1021/jo00299a037>
10. J. Organomet. Chem. 1988, 352, 239.
< E., Périchon J.: https://doi.org/10.1016/0022-328X(88)83038-9>
11. New J. Chem. 1989, 13, 53.
L., Rollin Y., Périchon J.:
12. Tetrahedron 1998, 54, 1289.
< C., Lasry S., Nédélec J. Y., Périchon J.: https://doi.org/10.1016/S0040-4020(97)10225-3>
13. J. Chem. Soc., Chem. Commun. 1995, 2497.
< S., Duñach E.: https://doi.org/10.1039/c39950002497>
14a. Tetrahedron Lett. 1985, 26, 1509.
< O., Troupel M., Périchon J.: https://doi.org/10.1016/S0040-4039(00)98538-1>
14b. Synthesis 1990, 369.
< J., Folest J. C., Nédelec J. Y., Périchon J., Sibille S., Troupel M.: https://doi.org/10.1055/s-1990-26880>
15. Angew. Chem., Int. Ed. Engl. 1984, 23, 979.
< G., Gambino S., Filardo S., Gullota G.: https://doi.org/10.1002/anie.198409791>
16. Olivero S.: Ph.D. Thesis. University of Nice, Nice 1998.
17. J. Chem. Soc. C 1966, 82.
< J., Gigg R.: https://doi.org/10.1039/j39660000082>
18. J. Org. Chem. 1973, 38, 3224.
< E. J., Suggs J. W.: https://doi.org/10.1021/jo00958a032>
19a. Tetrahedron Lett. 1994, 35, 4349.
< R., Bourdet S., Bigot A., Zhu J.: https://doi.org/10.1016/S0040-4039(00)73351-X>
19b. Tetrahedron Lett. 1988, 29, 619.
< H. X., Guibé F., Balavoine G.: https://doi.org/10.1016/S0040-4039(00)80165-3>
20a. Angew. Chem., Int. Ed. Engl. 1976, 15, 281.
< V. G.: https://doi.org/10.1002/anie.197602811>
20b. Electrochim. Acta 1986, 31, 607.
< M. I.: https://doi.org/10.1016/0013-4686(86)87027-X>
21. Angew. Chem., Int. Ed. Engl. 1986, 25, 683.
< E.: https://doi.org/10.1002/anie.198606831>
22. Tetrahedron Lett. 1992, 33, 2485.
< B., Duñach E., Périchon J.: https://doi.org/10.1016/S0040-4039(00)92221-4>
23. Tetrahedron Lett. 1997, 38, 6193.
< S., Duñach E.: https://doi.org/10.1016/S0040-4039(97)01396-8>
24a. J. Org. Chem. 1975, 40, 593.
< L. S., Wagner S. D., Waterman E. L., Siirala-Hansen K.: https://doi.org/10.1021/jo00893a012>
24b. J. Am. Chem. Soc. 1985, 107, 5663.
< L. S., Thompson D. H. P.: https://doi.org/10.1021/ja00306a012>
25a. Chem. Lett. 1976, 1091.
< J., Yamamoto T., Yamamoto A.: https://doi.org/10.1246/cl.1976.1091>
25b. J. Am. Chem. Soc. 1981, 103, 6863.
< T., Ishizu J., Yamamoto A.: https://doi.org/10.1021/ja00413a014>
26a. Org. React. 1972, 19, 115.
M. F.:
26b. J. Organomet. Chem. 1977, 139, C45.
< J. J., Im K. R.: https://doi.org/10.1016/S0022-328X(00)85476-5>
27a. J. Am. Chem. Soc. 1991, 133, 22.
S., Duñach E., Périchon J.:
27b. J. Am. Chem. Soc. 1991, 133, 8447.
< S., Duñach E., Périchon J.: https://doi.org/10.1021/ja00022a037>
27c. New J. Chem. 1989, 13, 53.
L., Rollin Y., Périchon J.:
28. J. Electroanal. Chem. Interfacial Electrochem. 1987, 219, 259.
< S., Ugo P., Bontempelli G., Fiorani M.: https://doi.org/10.1016/0022-0728(87)85044-1>
29. J. Org. Chem. 1989, 54, 2198.
< M., Satoh S., Suginome H.: https://doi.org/10.1021/jo00284a040>
30. Tetrahedron Lett. 1984, 25, 6017.
S., Uneyama K., Matsuda H.:
31. Tetrahedron Lett. 1993, 34, 1475.
< H., Duñach E., Périchon J.: https://doi.org/10.1016/S0040-4039(00)60322-2>
32. Tetrahedron Lett. 1987, 28, 55.
< S., d′Incan E., Leport L., Massebiau M., Périchon J.: https://doi.org/10.1016/S0040-4039(00)95647-8>
33. Electrochim. Acta 1997, 42, 2159.
< D., Olivero S., Duñach E.: https://doi.org/10.1016/S0013-4686(97)85493-X>
34. Tetrahedron Lett. 1999, 40, 2951.
< D., Duñach E.: https://doi.org/10.1016/S0040-4039(99)00357-3>
35. J. Chem. Soc., Chem. Commun. 1992, 1120.
< S., Matsushita H., Ohmori H.: https://doi.org/10.1039/c39920001120>
36. Tetrahedron Lett. 1995, 36, 4425.
< S., Duñach E.: https://doi.org/10.1016/0040-4039(95)00782-8>
37. J. Electroanal. Chem. 1992, 332, 127.
< M. S., Peters D. G.: https://doi.org/10.1016/0022-0728(92)80345-5>
38. J. Chem. Soc., Perkins Trans. 1 1993, 649.
< S., Matsushita H., Ohmori H.: https://doi.org/10.1039/p19930000649>
39. J. Org. Chem. 1996, 61, 677.
< M., Katsumata A., Setsu F., Tokunaga Y., Fukumoto K.: https://doi.org/10.1021/jo951653e>
40a. Tetrahedron Lett. 1994, 35, 5.
< S., Horiguchi H., Matsushita H., Ohmori H.: https://doi.org/10.1016/S0040-4039(00)75801-1>
40b. Tetrahedron Lett. 1994, 35, 725.
< S., Horiguchi H., Matsushita H., Ohmori H.: https://doi.org/10.1016/S0040-4039(00)75801-1>
41. J. Organomet. Chem. 1995, C48, 503.
J. C., Duñach E.:
42. Organometallics 1997, 16, 5900.
< M., Muller G., Paneyella D., Rocamora M., Duñach E., Clinet J. C.: https://doi.org/10.1021/om9707026>
43. Eur. J. Org. Chem. 1999, 1885.
< S., Duñach E.: https://doi.org/10.1002/(SICI)1099-0690(199908)1999:8<1885::AID-EJOC1885>3.0.CO;2-U>
44. J. Am. Chem. Soc. 1980, 102, 7361.
< B. J., Eisenberg R.: https://doi.org/10.1021/ja00544a035>
45a. J. Chem. Soc., Chem. Commun. 1984, 1315.
< M., Rollin J. P., Ruppert R., Sauvage J. P.: https://doi.org/10.1039/c39840001315>
45b. J. Am. Chem. Soc. 1986, 108, 7461.
< M., Rollin J. P., Ruppert R., Sauvage J. P.: https://doi.org/10.1021/ja00284a003>
46a. New J. Chem. 1991, 5, 62.
M., Rollin Y., Périchon J., Fauverque J. F.:
46b. J. Organomet. Chem. 1984, 264, 273.
< J. F., Chevrot C., Jutand A., François M., Périchon J.: https://doi.org/10.1016/0022-328X(84)85153-0>
46c. J. Am. Chem. Soc. 1991, 113, 2819.
< C., Jutand A.: https://doi.org/10.1021/ja00008a003>
46d. J. Electroanal. Chem. 1991, 306, 141.
< C., Jutand A.: https://doi.org/10.1016/0022-0728(91)85227-G>
47. Organometallics 1998, 17, 3747.
< S., Rolland J. P., Duñach E.: https://doi.org/10.1021/om980247t>
48. J. Organomet. Chem. 1980, 186, 401.
< C., Pletcher D.: https://doi.org/10.1016/S0022-328X(00)82420-1>
49. Acc. Chem. Res. 1979, 12, 146.
< R. F.: https://doi.org/10.1021/ar50136a006>
50. Tanaka H., Ren Q., Torii S. in: Novel Trends in Electroorganic Synthesis (S. Torii, Ed.), p. 195. Kodanska, Tokyo 1995.
51. Tetrahedron Lett. 1999, 40, 5685.
< D., Panyella D., Rocamora M., Gomez M., Clinet J. C., Muller G., Duñach E.: https://doi.org/10.1016/S0040-4039(99)01071-0>
52. Tetrahedron Lett. 1995, 26, 1655.
< S., Tanaka H., Morisaki K.: https://doi.org/10.1016/S0040-4039(00)98576-9>
53. Bull. Chem. Soc. Jpn. 1994, 67, 595.
< T., Kawafuchi H., Aoki K., Yoshida A., Torii S.: https://doi.org/10.1246/bcsj.67.595>
54. J. Org. Chem. 1998, 63, 218.
< J., Rusling J. F.: https://doi.org/10.1021/jo971897u>
55. J. Am. Chem. Soc. 1986, 108, 1441.
< M. D., Ross G. A., Woolsey N. F., Bartak E.: https://doi.org/10.1021/ja00267a013>
56. Grimshaw J. in: Novel Trends in Electroorganic Synthesis (S. Torii, Ed.), p. 268. Kodanska, Tokyo 1998.
57. Coord. Chem. Rev. 1996, 155, 35.
< P. S., Salzmann R.: https://doi.org/10.1016/S0010-8545(96)90176-9>
58. Chem. Rev. 1996, 96, 395.
< B. M., Van Vranken D. L.: https://doi.org/10.1021/cr9409804>
59. J. Chem. Soc., Chem. Commun. 1981, 136.
< A. J. L., Meijs G. F.: https://doi.org/10.1039/c39810000136>
60. Giese B.: Radicals in Organic Synthesis: Formation of Carbon–Carbon Bonds. Pregamon Press, London 1986.
61. J. Org. Chem. 1990, 55, 6171.
< G. A., Harring L.: https://doi.org/10.1021/jo00312a025>
62. J. Am. Chem. Soc. 1992, 114, 6050.
< D. P., Totleben M. J.: https://doi.org/10.1021/ja00041a024>