Collect. Czech. Chem. Commun. 2003, 68, 554-586
https://doi.org/10.1135/cccc20030554

Externally Corrected Coupled-Cluster Approaches: Energy versus Amplitude Corrected CCSD

Josef Paldus* and Xiangzhu Li

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

References

1. Picard É.: Jubilé Scientifique de M. Élie Cartan célébré à la Sorbonne le 18. Mai 1939, p. 8. Gauthiers–Villars, Paris 1939.
2a. Hartree D. R.: Proc. Cambridge Philos. Soc. 1928, 24, 89. <https://doi.org/10.1017/S0305004100011919>
2b. Hartree D. R.: Proc. Cambridge Philos. Soc. 1928, 24, 111. <https://doi.org/10.1017/S0305004100011920>
2c. Hartree D. R.: Proc. Cambridge Philos. Soc. 1928, 24, 426. <https://doi.org/10.1017/S0305004100015954>
3. Fock V.: Z. Phys. 1930, 61, 126. <https://doi.org/10.1007/BF01340294>
4. Roothaan C. C. J.: Rev. Mod. Phys. 1951, 23, 69. <https://doi.org/10.1103/RevModPhys.23.69>
5. Wahl A. C.: J. Chem. Phys. 1964, 41, 2600. <https://doi.org/10.1063/1.1726327>
6. Shelton D. P., Rice J. E.: Chem. Rev. (Washington, D. C.) 1994, 94, 3. <https://doi.org/10.1021/cr00025a001>
7. Piecuch P., Kondo A. E., Špirko V., Paldus J.: J. Chem. Phys. 1996, 104, 4699. <https://doi.org/10.1063/1.471164>
8. Wilson S.: Electron Correlation in Molecules. Clarendon, Oxford 1984.
9. Harris F. E., Monkhorst H. J., Freeman D. L.: Algebraic and Diagrammatic Methods in Many-Fermion Theory. Oxford University Press, Oxford 1992.
10. Paldus J. in: Atomic, Molecular, and Optical Physics Handbook (G. W. F. Drake, Ed.), Chap. 5. AIP Press, Woodbury (NY) 1996.
11. Čížek J.: J. Chem. Phys. 1966, 45, 4256. <https://doi.org/10.1063/1.1727484>
12. Čížek J.: Adv. Chem. Phys. 1969, 14, 35.
13. Bartlett R. J. in: Modern Electronic Structure Theory, Part II (D. R. Yarkony, Ed.), Vol. 2, p. 1047. World Scientific, Singapore 1995.
14. Paldus J., Li X.: Adv. Chem. Phys. 1999, 110, 1. <https://doi.org/10.1002/9780470141694.ch1>
15. Raghavachari K.: J. Chem. Phys. 1985, 82, 4607. <https://doi.org/10.1063/1.448718>
16. Urban M., Noga J., Cole S. J., Bartlett R. J.: J. Chem. Phys. 1985, 83, 4041. <https://doi.org/10.1063/1.449067>
17a. Paldus J. in: Methods in Computational Molecular Physics; NATO Advanced Study Institute, Series B: Physics (S. Wilson and G. H. F. Diercksen, Eds), Vol. 293, p. 99. Plenum Press, New York 1992.
17b. Paldus J. in: Relativistic and Electron Correlation Effects in Molecules and Solids; NATO Advanced Study Institute, Series B: Physics (G. L. Malli, Ed.), Vol. 318, p. 207. Plenum Press, New York 1994.
18a. Mášik J., Hubač I., Mach P.: J. Chem. Phys. 1998, 108, 6571. <https://doi.org/10.1063/1.476071>
18b. Pittner J., Nachtigall P., Čársky P., Mášik J., Hubač I.: J. Chem. Phys. 1999, 110, 10275. <https://doi.org/10.1063/1.478961>
19. Mahapatra U. S., Datta B., Mukherjee D.: J. Chem. Phys. 1999, 110, 6171. <https://doi.org/10.1063/1.478523>
20a. Meller J., Malrieu J.-P., Caballol R.: J. Chem. Phys. 1996, 104, 4068. <https://doi.org/10.1063/1.471220>
20b. Peris G., Planelles J., Malrieu J.-P., Paldus J.: J. Chem. Phys. 1999, 110, 11708. <https://doi.org/10.1063/1.479116>
21a. Meissner H., Paldus J.: J. Chem. Phys. 2000, 113, 2594. <https://doi.org/10.1063/1.1305321>
21b. Meissner H., Paldus J.: J. Chem. Phys. 2000, 113, 2612. <https://doi.org/10.1063/1.1305322>
21c. Meissner H., Paldus J.: J. Chem. Phys. 2000, 113, 2622. <https://doi.org/10.1063/1.1305323>
21d. Meissner H., Paldus J.: Int. J. Quantum Chem. 2000, 80, 782. <https://doi.org/10.1002/1097-461X(2000)80:4/5<782::AID-QUA26>3.0.CO;2-3>
21e. Meissner H., Ema I.: J. Mol. Struct. (THEOCHEM) 2001, 547, 171. <https://doi.org/10.1016/S0166-1280(01)00469-9>
22. Paldus J., Čížek J., Shavitt I.: Phys. Rev. A: At., Mol., Opt. Phys. 1972, 5, 50. <https://doi.org/10.1103/PhysRevA.5.50>
23a. Čížek J., Paldus J.: Int. J. Quantum Chem. 1971, 5, 359. <https://doi.org/10.1002/qua.560050402>
23b. Paldus J., Čížek J., Jeziorski B.: J. Chem. Phys. 1989, 90, 4356. <https://doi.org/10.1063/1.456647>
24. Paldus J. in: Self-Consistent Field: Theory and Applications (R. Carbó and M. Klobukowski, Eds), p. 1. Elsevier, Amsterdam 1990.
25a. Paldus J., Čížek J., Takahashi M.: Phys. Rev. A: At., Mol., Opt. Phys. 1984, 30, 2193. <https://doi.org/10.1103/PhysRevA.30.2193>
25b. Paldus J., Takahashi M., Cho R. W. H.: Phys. Rev. B: Condens. Matter 1984, 30, 4267. <https://doi.org/10.1103/PhysRevB.30.4267>
26. Piecuch P., Toboła R., Paldus J.: Phys. Rev. A: At., Mol., Opt. Phys. 1996, 54, 1210. <https://doi.org/10.1103/PhysRevA.54.1210>
27a. Paldus J., Planelles J.: Theor. Chim. Acta 1994, 89, 13. <https://doi.org/10.1007/BF01167279>
27b. Planelles J., Paldus J., Li X.: Theor. Chim. Acta 1994, 89, 33. <https://doi.org/10.1007/BF01167280>
27c. Planelles J., Paldus J., Li X.: Theor. Chim. Acta 1994, 89, 59. <https://doi.org/10.1007/BF01167281>
28. Peris G., Planelles J., Paldus J.: Int. J. Quantum Chem. 1997, 62, 137. <https://doi.org/10.1002/(SICI)1097-461X(1997)62:2<137::AID-QUA2>3.0.CO;2-X>
29a. Li X., Peris G., Planelles J., Rajadell F., Paldus J.: J. Chem. Phys. 1997, 107, 90. <https://doi.org/10.1063/1.474355>
29b. Peris G., Rajadell F., Li X., Planelles J., Paldus J.: Mol. Phys. 1998, 94, 235. <https://doi.org/10.1080/00268979809482312>
30. Stolarczyk L. Z.: Chem. Phys. Lett. 1994, 217, 1. <https://doi.org/10.1016/0009-2614(93)E1333-C>
31a. Li X., Paldus J.: J. Chem. Phys. 1994, 101, 8812. <https://doi.org/10.1063/1.468074>
31b. Jeziorski B., Paldus J., Jankowski P.: Int. J. Quantum Chem. 1995, 56, 129. <https://doi.org/10.1002/qua.560560302>
32. Li X., Paldus J.: J. Chem. Phys. 1997, 107, 6257. <https://doi.org/10.1063/1.474289>
33a. Li X., Paldus J.: J. Chem. Phys. 1998, 108, 637. <https://doi.org/10.1063/1.475425>
33b. Li X., Paldus J.: J. Chem. Phys. 1999, 110, 2844. <https://doi.org/10.1063/1.477926>
34a. Li X., Paldus J.: Collect. Czech. Chem. Commun. 1998, 63, 1381. <https://doi.org/10.1135/cccc19981381>
34b. Li X., Paldus J.: Chem. Phys. Lett. 1998, 286, 145. <https://doi.org/10.1016/S0009-2614(97)01132-9>
35a. Li X., Grabowski I., Jankowski K., Paldus J.: Adv. Quantum Chem. 1999, 36, 231. <https://doi.org/10.1016/S0065-3276(08)60485-2>
35b. Peris G., Planelles J., Malrieu J.-P., Paldus J.: J. Chem. Phys. 1999, 110, 11708. <https://doi.org/10.1063/1.479116>
35c. Planelles J., Peris G., Paldus J.: Int. J. Quantum Chem. 2000, 77, 693. <https://doi.org/10.1002/(SICI)1097-461X(2000)77:4<693::AID-QUA1>3.0.CO;2-P>
36a. Li X., Paldus J.: Mol. Phys. 2000, 98, 1185. <https://doi.org/10.1080/00268970050080546>
36b. Li X., Paldus J.: Int. J. Quantum Chem. 2000, 80, 743. <https://doi.org/10.1002/1097-461X(2000)80:4/5<743::AID-QUA24>3.0.CO;2-K>
37. Li X., Paldus J.: J. Chem. Phys. 2000, 113, 9966. <https://doi.org/10.1063/1.1323260>
38. Paldus J., Li X.: Top. Curr. Chem. 1999, 203, 1. <https://doi.org/10.1007/3-540-48972-X_1>
39. Li X.: J. Mol. Struct. (THEOCHEM) 2001, 547, 69. <https://doi.org/10.1016/S0166-1280(01)00460-2>
40a. Li X., Paldus J.: J. Chem. Phys. 2001, 115, 5759. <https://doi.org/10.1063/1.1398088>
40b. Li X., Paldus J.: J. Chem. Phys. 2001, 115, 5774. <https://doi.org/10.1063/1.1398089>
41. Paldus J., Li, X. in: Advances in Quantum Many-Body Theory (R. F. Bishop, T. Brandes, K. A. Gernoth, N. R. Walet and Y. Xian, Eds), Vol. 5, p. 393. World Scientific, Singapore 2002.
42. Li X., Paldus J. in: Low-Lying Potential–Energy Surfaces (M. R. Hoffmann and K. G. Dyall, Eds), ACS Symposium Series No. 828, p. 10. ACS Books, Washington 2002.
43. Li X., Paldus J.: J. Chem. Phys. 2002, 117, 1941. <https://doi.org/10.1063/1.1488597>
44. Li X., Paldus J.: J. Chem. Phys. 2003, 118, 2470. <https://doi.org/10.1063/1.1535438>
45. Piecuch P., Kowalski K. in: Computational Chemistry: Reviews of Current Trends (J. Leszczynski, Ed.), Vol. 5, p. 1. World Scientific, Singapore 2000.
46a. Kowalski K., Piecuch P.: J. Chem. Phys. 2000, 113, 18. <https://doi.org/10.1063/1.481769>
46b. Kowalski K., Piecuch P.: J. Chem. Phys. 2000, 113, 5644. <https://doi.org/10.1063/1.1290609>
46c. Kowalski K., Piecuch P.: J. Mol. Struct. (THEOCHEM) 2001, 547, 191. <https://doi.org/10.1016/S0166-1280(01)00470-5>
47. Jankowski K., Paldus J., Piecuch P.: Theor. Chim. Acta 1991, 80, 223. <https://doi.org/10.1007/BF01117411>
48a. Kowalski K., Piecuch P.: Chem. Phys. Lett. 2001, 344, 165. <https://doi.org/10.1016/S0009-2614(01)00730-8>
48b. Piecuch P., Kucharski S. A., Kowalski K.: Chem. Phys. Lett. 2001, 344, 176. <https://doi.org/10.1016/S0009-2614(01)00759-X>
48c. Piecuch P., Kucharski S. A., Špirko V., Kowalski K.: J. Chem. Phys. 2001, 115, 5796. <https://doi.org/10.1063/1.1400140>
49. Kutzelnigg W.: Mol. Phys. 1998, 94, 65. <https://doi.org/10.1080/00268979809482295>
50. Chan Y. C., Harding D. R., Stwalley W. C., Vidal C. R.: J. Chem. Phys. 1986, 85, 2436. <https://doi.org/10.1063/1.451102>
51. Stwalley W. C., Zemke W. T.: J. Phys. Chem. Ref. Data 1993, 22, 87. <https://doi.org/10.1063/1.555936>
52. Dulick M., Zhang K. Q., Guo B., Bernath P. F.: J. Mol. Spectrosc. 1998, 188, 14. <https://doi.org/10.1006/jmsp.1997.7430>
53. Mann D. E., Thrush B. A., Lide D. R., Jr., Ball J. J., Acquista N.: J. Chem. Phys. 1961, 34, 420. <https://doi.org/10.1063/1.1700967>
54. Webb D. U., Rao K. N.: J. Mol. Spectrosc. 1968, 28, 121. <https://doi.org/10.1016/0022-2852(68)90001-5>
55. Di Leonardo G., Douglas A. E.: Can. J. Phys. 1973, 51, 434. <https://doi.org/10.1139/p73-057>
56a. Coxon J. A., Hajigeorgiou P. G.: J. Mol. Spectrosc. 1989, 133, 45. <https://doi.org/10.1016/0022-2852(89)90242-7>
56b. Coxon J. A., Hajigeorgiou P. G.: J. Mol. Spectrosc. 1990, 142, 254. <https://doi.org/10.1016/0022-2852(90)90182-P>
57. Dunning T. H., Jr.: J. Chem. Phys. 1989, 90, 1007. <https://doi.org/10.1063/1.456153>
58. Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352, U.S.A., and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under the contract DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information.
59. The GAMESS system of programs by M. Dupuis, D. Spangler, and J. J. Wendoloski, National Resource for Computations in Chemistry, Software Catalog (University of California, Berkeley (CA) 1980), Program QG01; Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga M., Nguyen K. A., Su S. J., Windus T. L., Dupuis M., Montgomery J. A.: J. Comput. Chem. 1993, 14, 1347. <https://doi.org/10.1002/jcc.540141112>
60. LeRoy R. J.: LEVEL 7.4, A Computer Program Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, and Calculating Various Expectation Values and Matrix Elements. Chemical Physics Research Report CP-642R, University of Waterloo 2001.
61. Kosman W. M., Hinze J.: J. Mol. Spectrosc. 1975, 56, 93. <https://doi.org/10.1016/0022-2852(75)90206-4>
62. Vidal C. R., Scheingraber H.: J. Mol. Spectrosc. 1977, 65, 46. <https://doi.org/10.1016/0022-2852(77)90357-5>
63a. Coxon J. A.: J. Mol. Spectrosc. 1986, 117, 361. <https://doi.org/10.1016/0022-2852(86)90161-X>
63b. Coxon J. A.: J. Mol. Spectrosc. 1989, 133, 96. <https://doi.org/10.1016/0022-2852(89)90246-4>
64a. Peterson K. A., Dunning T. H., Jr.: J. Chem. Phys. 1995, 102, 2032. <https://doi.org/10.1063/1.468725>
64b. Peterson K. A., Dunning T. H., Jr.: J. Chem. Phys. 1995, 103, 4572.