Collect. Czech. Chem. Commun. 2005, 70, 370-382
https://doi.org/10.1135/cccc20050370

Interaction of Polar Groups with a Bulky Hydrocarbon Residue: Polarizability and Steric Effects

Stanislav Böhma and Otto Exnerb,*

a Department of Organic Chemistry, Institute of Chemical Technology, Prague, 166 28 Prague 6, Czech Republic
b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic

References

1. Hammett L. P.: Physical Organic Chemistry, 2nd ed., Chap. 11. McGraw–Hill, New York 1970.
2. Exner O.: Correlation Analysis of Chemical Data, Chaps 2 and 5. Plenum, New York 1988.
3. Charton M.: Prog. Phys. Org. Chem. 1981, 13, 119. <https://doi.org/10.1002/9780470171929.ch3>
4. Topsom R. D.: Prog. Phys. Org. Chem. 1976, 12, 1. <https://doi.org/10.1002/9780470171912.ch1>
5. Taft R. W., Topsom R. D.: Prog. Phys. Org. Chem. 1987, 16, 1. <https://doi.org/10.1002/9780470171950.ch1>
6. Charton M., Charton B. I.: J. Phys. Org. Chem. 2003, 16, 715. <https://doi.org/10.1002/poc.636>
7. Pross A., Radom L., Taft R. W.: J. Org. Chem. 1980, 45, 818. <https://doi.org/10.1021/jo01293a012>
8a. Exner O.: Org. Reactiv. (Tartu) 1995, 29, 1.
8b. Exner O.: J. Phys. Org. Chem. 1999, 12, 265. <https://doi.org/10.1002/(SICI)1099-1395(199904)12:4<265::AID-POC124>3.0.CO;2-O>
9a. Exner O., Böhm S.: J. Chem. Soc., Perkin Trans. 2 1996, 475.
9b. Roux M. V., Jiménez P., Dávalos J. Z., Temprado M., Liebman J. F.: J. Chem. Thermodyn. 2003, 35, 803. <https://doi.org/10.1016/S0021-9614(03)00017-X>
10. Exner O., S. Böhm S.: Collect. Czech. Chem. Commun. 2001, 66, 1623. <https://doi.org/10.1135/cccc20011623>
11a. Wiberg K. B.: J. Org. Chem. 2002, 67, 4787. <https://doi.org/10.1021/jo020100i>
11b. Exner O., Böhm S.: J. Org. Chem. 2002, 67, 6320. <https://doi.org/10.1021/jo020172+>
11c. Liu L., Fu Y., Liu R., Li R.-Q., Guo Q.-X.: J. Chem. Inf. Comput. Sci. 2004, 44, 652. <https://doi.org/10.1021/ci0342122>
12a. Hehre W. J., Radom L., Pople J. A.: J. Am. Chem. Soc. 1972, 94, 1496. <https://doi.org/10.1021/ja00760a011>
12b. Greenberg A., Stevenson T. A.: J. Am. Chem. Soc. 1985, 107, 3488. <https://doi.org/10.1021/ja00298a015>
12c. Helal M.: J. Mol. Struct. (Theochem) 2000, 528, 255. <https://doi.org/10.1016/S0166-1280(99)00500-X>
13a. O., Yáñez M., Decouzon M., Gal J.-F., Maria P.-C., Guillemin J.-C.: J. Am. Chem. Soc. 1999, 121, 4653. <https://doi.org/10.1021/ja982657e>
13b. Exner O., Böhm S.: J. Chem. Soc., Perkin Trans. 2 2000, 1994. <https://doi.org/10.1039/b003073m>
14. Exner O., Böhm S.: J. Comput. Chem. 2004, 25, 1979. <https://doi.org/10.1002/jcc.20124>
15. George P., Trachtman M., Bock C. W., Brett A. M.: J. Chem. Soc., Perkin Trans. 2 1976, 1222. <https://doi.org/10.1039/p29760001222>
16a. Benson S. W., Cruickshank F. R., Golden D. M., Haugen G. R., O’Neal H. E., Rodgers A. S., Shaw R., Walsh R.: Chem. Rev. 1969, 69, 279. <https://doi.org/10.1021/cr60259a002>
16b. Domalski E. S., Hearing E. D.: J. Phys. Chem. Ref. Data 1993, 22, 805. <https://doi.org/10.1063/1.555927>
17. Bureš M., Holub R., Leitner J., Voňka P.: Termochemické veličiny organických sloučenin (Thermochemical Quantities of Organic Compounds). Prague Institute of Chemical Technology, Prague 1987.
18. Böhm S., Exner O.: J. Mol. Struct. (Theochem) 2005, 722, 125. <https://doi.org/10.1016/j.theochem.2004.11.053>
19. Exner O., Böhm S.: J. Phys. Org. Chem. 2004, 17, 124. <https://doi.org/10.1002/poc.701>
20a. Exner O.: Collect. Czech. Chem. Commun. 1966, 31, 3222. <https://doi.org/10.1135/cccc19663222>
20b. Exner O.: Collect. Czech. Chem. Commun. 1967, 32, 1. <https://doi.org/10.1135/cccc19670001>
21a. Istomin B. I., Palm V. A.: Reakts. Sposobnost Organ. Soedin. (Tartu) 1971, 8, 845.
21b. Istomin B. I., Palm V. A.: Reakts. Sposobnost Organ. Soedin. (Tartu) 1972, 9, 433.
21c. Istomin B. I., Palm V. A.: Reakts. Sposobnost Organ. Soedin. (Tartu) 1972, 9, 469.
21d. Istomin B. I., Palm V. A.: Reakts. Sposobnost Organ. Soedin. (Tartu) 1972, 9, 847.
22a. Becke A. D.: Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098. <https://doi.org/10.1103/PhysRevA.38.3098>
22b. Lee C., Yang W., Parr R. G.: Phys. Rev. B: Condens. Matter 1988, 37, 785. <https://doi.org/10.1103/PhysRevB.37.785>
22c. Miehlich B., Savin A., Stoll H., Preuss H.: Chem. Phys. Lett. 1989, 157, 200. <https://doi.org/10.1016/0009-2614(89)87234-3>
22d. Becke A. D.: J. Chem. Phys. 1993, 98, 5648. <https://doi.org/10.1063/1.464913>
23. Charton M. in: Similarity Models in Organic Chemistry, Biochemistry and Related Fields (R. I. Zalewski, T. M. Krygowski and J. Shorter, Eds.) p. 629. Elsevier, Amsterdam 1991.
24. Verloop A., Hoogenstraaten W., Tipker J. in: Drug Design (E. J. Ariens, Ed.), Vol. VII, p. 165. Academic Press, New York 1976.
25. Exner O., Ingr M., Čársky P.: J. Mol. Struct. (Theochem) 1997, 397, 231. <https://doi.org/10.1016/S0166-1280(96)04891-9>
26. Allred A. I.: J. Inorg. Nucl. Chem. 1961, 17, 215. <https://doi.org/10.1016/0022-1902(61)80142-5>
27. Inamoto N., Masuda S.: Chem. Lett. 1982, 1003. <https://doi.org/10.1246/cl.1982.1003>
28. Altona C., Ippel J. H., Westra Hoekzema A. J. A., Erkelens C., Groesbeek M., Donders L. A.: Magn. Reson. Chem. 1989, 27, 564. <https://doi.org/10.1002/mrc.1260270609>
29. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, Revision B.03. Gaussian, Inc., Pittsburgh 2003.
30. Hunter E. P. L., Lias S. G.: J. Phys. Chem. Ref. Data 1998, 27, 413. <https://doi.org/10.1063/1.556018>
31. Hunter E. P., Lias S. G. in: Proton Affinity Evaluation (P. J. Linstrom and W. G. Mallard, Eds), NIST Chemistry WebBook, NIST Standard Reference Database, No. 69. National Institute of Standards and Technology, Gaithersburg (MD) 2003 (http://webbook.nist.gov).
32. Roithová J., Exner O.: J. Phys. Org. Chem. 2001, 14, 752. <https://doi.org/10.1002/poc.424>
33. Greenshields J. B., Rossini F. D.: J. Phys. Chem. 1958, 62, 271. <https://doi.org/10.1021/j150561a005>
34a. Siggel M. R., Thomas T. D.: J. Am. Chem. Soc. 1988, 108, 4360. <https://doi.org/10.1021/ja00275a022>
34b. Exner O., Nauš P.: J. Phys. Org. Chem. 2000, 13, 693. <https://doi.org/10.1002/1099-1395(200011)13:11<693::AID-POC300>3.0.CO;2-2>
35. Exner O., Böhm S.: Phys. Chem. Chem. Phys. 2004, 6, 3864. <https://doi.org/10.1039/b404556d>
36. Böhm S., Exner O.: Acta Crystallogr., Sect. B: Struct. Sci. 2004, 60, 103. <https://doi.org/10.1107/S010876810302826X>
37. Exner O., Böhm S.: Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58, 877. <https://doi.org/10.1107/S0108768102010510>
38. Tables of Rate and Equilibrium Constants of Heterolytic Organic Reactions, Vol. 5(II) (V. A. Palm, Ed.), p. 161. VINITI, Moscow 1979.