Collect. Czech. Chem. Commun.
2005, 70, 1225-1271
https://doi.org/10.1135/cccc20051225
The Spherical Tensor Gradient Operator
Ernst Joachim Weniger
Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany
References
1. Kline M.: Mathematical Thought from Ancient to Modern Times. Oxford University Press, Oxford 1972.
2. Watson G. N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge 1966.
3. J. Chem. Phys. 1983, 78, 6121.
< E. J., Steinborn E. O.: https://doi.org/10.1063/1.444574>
4. Int. J. Quantum Chem. 1997, 62, 557.
< P., Bartlett R. J.: https://doi.org/10.1002/(SICI)1097-461X(1997)62:6<557::AID-QUA1>3.0.CO;2-V>
5. Proc. Math. Soc. London 1892, 24, 54.
E. W.:
6. Weniger E. J.: Ph.D. Thesis. Universität Regensburg, Regensburg 1982. A short abstract of this thesis was published in Zentralbl. Math. 1984, 523, 444.
7. Phys. Rev. A 2003, 67, 043601.
< C., Kramer T., Kleber M.: https://doi.org/10.1103/PhysRevA.67.043601>
8. J. Math. Phys. 1998, 39, 3393.
< E., Methfessel M., Krabs W., Schmidt P. C.: https://doi.org/10.1063/1.532437>
9. Lect. Notes Phys. 1999, 535, 114.
< M., van Schilfgaarde M., Casali R. A.: https://doi.org/10.1007/3-540-46437-9_3>
10. J. Comput. Phys. 1985, 61, 195.
< J., Steinborn E. O.: https://doi.org/10.1016/0021-9991(85)90082-8>
11. Phys. Rev. A 1988, 38, 3857.
< J., Steinborn E. O.: https://doi.org/10.1103/PhysRevA.38.3857>
12. J. Math. Phys. 1983, 24, 1989.
< A. W.: https://doi.org/10.1063/1.525957>
13. J. Math. Phys. 1984, 25, 698.
< A. W.: https://doi.org/10.1063/1.526178>
14. J. Math. Phys. 1985, 26, 1540.
< A. W.: https://doi.org/10.1063/1.526914>
15. Int. J. Quantum Chem. 1983, 24, 1.
< B. K.: https://doi.org/10.1002/qua.560240102>
16. Novosadov B. K. in: Theory and Methods of Calculation of Molecular Spectra (I. A. Gribov and W. J. Orville-Thomas, Eds), pp. 596–625. Wiley, Chichester 1988.
17. J. Struct. Chem. 2001, 42, 355.
< B. K.: https://doi.org/10.1023/A:1012444517593>
18. J. Struct. Chem. 2002, 43, 383.
< B. K.: https://doi.org/10.1023/A:1020372612789>
19. J. Struct. Chem. 2002, 43, 390.
< B. K.: https://doi.org/10.1023/A:1020324729627>
20. J. Mol. Struct. (THEOCHEM) 2003, 664–665, 55.
< B. K.: https://doi.org/10.1016/S0166-1280(03)00559-1>
21. Chin. J. Phys. 1994, 32, 847.
H.:
22. Theor. Chim. Acta 1992, 83, 105.
< E. O., Weniger E. J.: https://doi.org/10.1007/BF01113245>
23. Int. J. Quantum Chem. 2000, 76, 280.
< E. J.: https://doi.org/10.1002/(SICI)1097-461X(2000)76:2<280::AID-QUA16>3.0.CO;2-C>
24. Int. J. Quantum Chem. 2002, 90, 92.
< E. J.: https://doi.org/10.1002/qua.948>
25. Phys. Rev. A 1986, 33, 3688.
< E. J., Grotendorst J., Steinborn E. O.: https://doi.org/10.1103/PhysRevA.33.3688>
26. J. Math. Phys. 1983, 24, 2553.
< E. J., Steinborn E. O.: https://doi.org/10.1063/1.525649>
27. J. Math. Phys. 1985, 26, 664.
< E. J., Steinborn E. O.: https://doi.org/10.1063/1.526604>
28. J. Math. Phys. 1989, 30, 774.
< E. J., Steinborn E. O.: https://doi.org/10.1063/1.528396>
29. Phys. Rev. A 1990, 42, 1127.
< B. I.: https://doi.org/10.1103/PhysRevA.42.1127>
30. Int. J. Quantum Chem. 2001, 81, 373.
< B. I.: https://doi.org/10.1002/1097-461X(2001)81:6<373::AID-QUA1007>3.0.CO;2-3>
31. Phys. Rev. A 2002, 66, 032502.
< B. I.: https://doi.org/10.1103/PhysRevA.66.032502>
32. J. Chem. Phys. 2003, 118, 1036.
< B. I.: https://doi.org/10.1063/1.1528935>
33. Comput. Phys. Commun. 2005, 165, 18.
< B. I.: https://doi.org/10.1016/j.cpc.2004.09.002>
34. Biedenharn L. C., Louck J. D.: Angular Momentum in Quantum Physics. Addison–Wesley, Reading (MS) 1981.
35. J. Math. Phys. 1978, 19, 2558.
< B. F.: https://doi.org/10.1063/1.523640>
36. Nucl. Phys. A 1973, 212, 341.
< F. D.: https://doi.org/10.1016/0375-9474(73)90568-X>
37. J. Aust. Math. Soc. B 1981, 22, 368.
< S. N.: https://doi.org/10.1017/S0334270000002708>
38. J. Math. Phys. 1986, 27, 549.
< M. A.: https://doi.org/10.1063/1.527205>
39. Hobson E. W.: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea, New York 1965. Originally published by Cambridge University Press, Cambridge 1931.
40. Avery J.: Hyperspherical Harmonics – Applications in Quantum Theory. Kluwer, Dordrecht 1989.
41. Avery J.: Hyperspherical Harmonics and Generalized Sturmians. Kluwer, Dordrecht 2000.
42. Judd B. R.: Angular Momentum Theory for Diatomic Molecules. Academic Press, New York 1975.
43. J. Math. Phys. 1985, 26, 276.
< E. J.: https://doi.org/10.1063/1.526970>
44. Int. J. Quantum Chem. 1998, 66, 273.
< F., Matsuoka O.: https://doi.org/10.1002/(SICI)1097-461X(1998)66:4<273::AID-QUA2>3.0.CO;2-S>
45. J. Chem. Phys. 1998, 108, 5230.
< L.-Y., Moharerrzadeh M.: https://doi.org/10.1063/1.475960>
46. Int. J. Quantum Chem. 1999, 73, 265.
< L.-Y., Moharerrzadeh M.: https://doi.org/10.1002/(SICI)1097-461X(1999)73:3<265::AID-QUA1>3.0.CO;2-7>
47. J. Mol. Struct. (THEOCHEM) 2001, 536, 263.
< L.-Y., Moharerrzadeh M.: https://doi.org/10.1016/S0166-1280(00)00704-1>
48. J. Phys. B 1979, 12, 1063.
< G.: https://doi.org/10.1088/0022-3700/12/7/010>
49. Theor. Chim. Acta 1980, 54, 323.
< G.: https://doi.org/10.1007/BF00552466>
50. Phys. Rev. A 1992, 45, 4438.
< A., Carrravetta V.: https://doi.org/10.1103/PhysRevA.45.4438>
51. Int. J. Quantum Chem. 1993, 48, 257.
< A., Salvetti O.: https://doi.org/10.1002/qua.560480407>
52. Int. J. Quantum Chem. 1992, 42, 751.
< N., Matsuoka O.: https://doi.org/10.1002/qua.560420415>
53. J. Quantum Chem. 2000, 79, 209.
< A., Staufer M., Birkenheuer U., Igoshine V., Rösch N.: https://doi.org/10.1002/1097-461X(2000)79:4<209::AID-QUA2>3.0.CO;2-J>
54. J. Chem. Phys. 1998, 109, 881.
< K.: https://doi.org/10.1063/1.476628>
55. J. Chem. Phys. 1999, 111, 4913.
< K.: https://doi.org/10.1063/1.479785>
56. J. Chem. Phys. 2000, 113, 7818.
< K.: https://doi.org/10.1063/1.1316013>
57. J. Comput. Chem. 2002, 23, 378.
< K.: https://doi.org/10.1002/jcc.10016>
58. J. Comput. Chem. 2003, 24, 1874.
< K.: https://doi.org/10.1002/jcc..10348>
59. J. Phys. B 1997, 30, 2529.
< J., Lin C. D.: https://doi.org/10.1088/0953-4075/30/11/007>
60. J. Phys. B 1997, 30, 2549.
< J., Lin C. D.: https://doi.org/10.1088/0953-4075/30/11/008>
61. J. Chem. Phys. 1979, 71, 917.
< D. K.: https://doi.org/10.1063/1.438381>
62. J. Chem. Phys. 1992, 92, 4364.
< O.: https://doi.org/10.1063/1.457744>
63. Can. J. Chem. 1992, 70, 388.
< O.: https://doi.org/10.1139/v92-055>
64. J. Chem. Phys. 1998, 108, 1063.
< O.: https://doi.org/10.1063/1.475468>
65. J. Mol. Struct. (THEOCHEM) 1998, 451, 35.
< O.: https://doi.org/10.1016/S0166-1280(98)00157-2>
66. Mol. Phys. 2003, 101, 33.
< O.: https://doi.org/10.1080/00268970210158704>
67. Saunders V. R. in: Methods in Computational Molecular Physics (G. Diercksen and S. Wilson, Eds), pp. 1–36. Reidel, Dordrecht 1983.
68. J. Chem. Phys. 1962, 36, 1112.
< F. P., Blanchard C. H.: https://doi.org/10.1063/1.1732673>
69. J. Chem. Phys. 1963, 39, 853.
< M.: https://doi.org/10.1063/1.1734348>
70. Reed M., Simon B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, New York 1975.
71. Chem. Phys. Lett. 1969, 3, 671.
< O.: https://doi.org/10.1016/0009-2614(69)87006-5>
72. Shavitt I. in: Methods in Computational Physics (B. Alder, S. Fernbach and M. Rotenberg, Eds), Vol 2, pp. 1–45. Academic Press, New York 1963.
73. Phys. Rev. A 1978, 18, 1.
< E., Steinborn E. O.: https://doi.org/10.1103/PhysRevA.18.1>
74. Homeier H. H. H.: Ph.D. Thesis, Universität Regensburg 1990. Published by S. Roderer Verlag, Regensburg 1990.
75. Magnus W., Oberhettinger F., Soni R. P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, New York 1966.
76. Theor. Chim. Acta 1975, 38, 273.
< E. O., Filter E.: https://doi.org/10.1007/BF00963467>
77. Phys. Rev. A 1983, 28, 2026.
< E. J., Steinborn E. O.: https://doi.org/10.1103/PhysRevA.28.2026>
78. Grosswald E.: Bessel Polynomials. Springer, Berlin 1978.
79. Baker G. A., Jr., Graves-Morris P.: Padé Approximants, 2nd ed. Cambridge University Press, Cambridge 1996.
80. Ann. Sci. Ec. Norm. Sup. 1892, 9, 1.
H.:
81. Int. J. Quantum Chem. 1984, 25, 941.
< A. W.: https://doi.org/10.1002/qua.560250603>
82. J. Math. Phys. 1978, 19, 79.
< E., Steinborn E. O.: https://doi.org/10.1063/1.523517>
83. J. Mol. Struct. (THEOCHEM) 1999, 490, 201.
< E. O., Homeier H. H. H., Fernández Rico J., Ema I., López R., Ramírez G.: https://doi.org/10.1016/S0166-1280(99)00099-8>
84. Int. J. Quantum Chem. 2000, 76, 244.
< E. O., Homeier H. H. H., Ema I., López R., Ramírez G.: https://doi.org/10.1002/(SICI)1097-461X(2000)76:2<244::AID-QUA13>3.0.CO;2-T>
85. J. Inst. Math. Appl. 1980, 26, 9.
< A.: https://doi.org/10.1093/imamat/26.1.1>
86. Appl. Math. Comput. 1981, 9, 175.
< D., Sidi A.: https://doi.org/10.1016/0096-3003(81)90028-X>
87. J. Phys. A 2003, 36, 11267.
< L., Safouhi H.: https://doi.org/10.1088/0305-4470/36/44/007>
88. J. Phys. A 2003, 36, 11791.
< L., Safouhi H.: https://doi.org/10.1088/0305-4470/36/47/007>
89. J. Phys. A 2004, 37, 3393.
< L., Safouhi H.: https://doi.org/10.1088/0305-4470/37/10/006>
90. Int. J. Quantum Chem. 2004, 99, 221.
< L., Safouhi H., Hoggan P.: https://doi.org/10.1002/qua.10853>
91. J. Comput. Phys. 2000, 165, 473.
< H.: https://doi.org/10.1006/jcph.2000.6621>
92. J. Phys. A 2001, 34, 881.
< H.: https://doi.org/10.1088/0305-4470/34/4/314>
93. J. Phys. A 2001, 34, 2801.
< H.: https://doi.org/10.1088/0305-4470/34/13/311>
94. J. Math. Chem. 2001, 29, 213.
< H.: https://doi.org/10.1023/A:1010994517423>
95. J. Comput. Phys. 2002, 176, 1.
< H.: https://doi.org/10.1006/jcph.2001.6925>
96. J. Phys. A 2002, 35, 9685.
< H.: https://doi.org/10.1088/0305-4470/35/45/314>
97. Int. J. Quantum Chem. 2001, 84, 580.
< H., Hoggan P. E.: https://doi.org/10.1002/qua.1412>
98. Int. J. Quantum Chem. 2002, 90, 119.
< H., Hoggan P. E.: https://doi.org/10.1002/qua.962>
99. Mol. Phys. 2003, 101, 19.
< H., Hoggan P. E.: https://doi.org/10.1080/0026897021000026809>
100. Dirac P. A. M.: The Principles of Quantum Mechanics, 4th ed. Clarendon Press, Oxford 1958.
101. Schwartz L.: Théorie des Distributions, 2nd ed. Hermann, Paris 1966.
102. Jackson J. D.: Classical Electrodynamics, 2nd ed. Wiley, New York 1975.
103. J. Math. Phys. 1978, 19, 1962.
< E. G. P.: https://doi.org/10.1063/1.523927>
104. Gel’fand I. M., Shilov G. E.: Generalized Functions. I. Properties and Operations. Academic Press, New York 1964.
105. Proc. Phys.-Math. Soc. Jpn. 1935, 17, 48.
H.:
106. Arfken G. B.: Mathematical Methods for Physicists, 3rd ed. Academic Press, Orlando 1985.
107. Jones M. N.: Spherical Harmonics and Tensors for Classical Field Theory. Wiley, New York 1985.
108. Stone A. J.: The Theory of Intermolecular Forces. Clarendon Press, Oxford 1996.
109. Weniger E. J.: M.S. Thesis. Universität Regensburg, Regensburg 1977.
110. Int. J. Quantum Chem. Symp. 1977, 11, 509.
E. O., Weniger E. J.:
111. Int. J. Quantum Chem. 1992, 44, 405.
< H. H. H., Weniger E. J., Steinborn E. O.: https://doi.org/10.1002/qua.560440308>
112. J. Math. Phys. 1980, 21, 2725.
< E., Steinborn E. O.: https://doi.org/10.1063/1.524390>
113. Phys. Rev. A 1984, 29, 2268.
< E. J., Steinborn E. O.: https://doi.org/10.1103/PhysRevA.29.2268>
114. Varshalovich D. A., Moskalev A. N., Khersonskii V. K.: Quantum Theory of Angular Momentum. World Scientific, Singapore 1988.
115. Knopp K.: Theorie und Anwendung der unendlichen Reihen. Springer, Berlin 1964.
116. Phys. Rev. A 1986, 33, 3706.
< J., Weniger E. J., Steinborn E. O.: https://doi.org/10.1103/PhysRevA.33.3706>
117. J. Mol. Struct. (THEOCHEM) 1990, 210, 71.
< E. O., Weniger E. J.: https://doi.org/10.1016/0166-1280(90)80026-K>
118. Int. J. Quantum Chem., Quantum Chem. Symp. 1986, 19, 181.
E. J., Grotendorst J., Steinborn E. O.:
119. J. Chem. Phys. 1987, 87, 3709.
< E. J., Steinborn E. O.: https://doi.org/10.1063/1.452975>
120. Theor. Chim. Acta 1988, 73, 323.
< E. J., Steinborn E. O.: https://doi.org/10.1007/BF00527739>
121. Comput. Phys. Rep. 1989, 10, 189. Los Alamos Preprint math-ph/0306302, http://arXiv.org.
< E. J.: https://doi.org/10.1016/0167-7977(89)90011-7>
122. J. Math. Phys. 2001, 42, 2167.
< C. M., Weniger E. J.: https://doi.org/10.1063/1.1362287>
123. J. Comput. Appl. Math. 2000, 122, 329. Reprinted in: Numerical Analysis 2000 (C. Brezinski, Ed.), Vol. 2, pp. 329–356. Elsevier, Amsterdam 2000.
< E. J.: https://doi.org/10.1016/S0377-0427(00)00363-0>
124. Numer. Algor. 2003, 33, 499.
< E. J.: https://doi.org/10.1023/A:1025517617217>
125. J. Math. Phys. 2004, 45, 1209.
< E. J.: https://doi.org/10.1063/1.1643787>
126. Comput. Math. Appl. 2003, 45, 189.
< E. J., Kirtman B.: https://doi.org/10.1016/S0898-1221(03)80014-7>
127. Condon E. U., Shortley G. H.: The Theory of Atomic Spectra. Cambridge University Press, Cambridge 1970.
128. Condon E. U., Odabasi H.: Atomic Structure. Cambridge University Press, Cambridge 1980.
129. Adv. Quantum Chem. 1973, 7, 1.
< E. O., Ruedenberg K.: https://doi.org/10.1016/S0065-3276(08)60558-4>
130. Normand J.-M.: A Lie Group: Rotations in Quantum Mechanics. North-Holland, Amsterdam 1980.
131. Philos. Trans. R. Soc. London, Ser. A 1929, 228, 151.
< J. A.: https://doi.org/10.1098/rsta.1929.0004>
132. Comput. Phys. Commun. 1982, 25, 149.
< E. J., Steinborn E. O.: https://doi.org/10.1016/0010-4655(82)90031-5>
133. J. Math. Phys. 1975, 16, 1961.
< K., Gordon R. G.: https://doi.org/10.1063/1.522426>
134. Comput. Phys. Commun. 1976, 11, 269.
< K., Gordon R. G.: https://doi.org/10.1016/0010-4655(76)90058-8>
135. J. Mol. Struct. (THEOCHEM) 1996, 368, 31.
< H. H. H., Steinborn E. O.: https://doi.org/10.1016/S0166-1280(96)90531-X>
136. Math. Comput. 1996, 65, 1601.
< Y.-L.: https://doi.org/10.1090/S0025-5718-96-00774-0>
137. J. Comput. Appl. Math. 1997, 85, 53.
< Y.-L.: https://doi.org/10.1016/S0377-0427(97)00128-3>
138. J. Comput. Phys. 1998, 139, 137.
< Y.-L.: https://doi.org/10.1006/jcph.1997.5867>
139. J. Phys. A 1998, 31, 7157.
< D.: https://doi.org/10.1088/0305-4470/31/34/017>
140. Appl. Math. Lett. 1999, 12, 101.
< H. A., Alassar R. S.: https://doi.org/10.1016/S0893-9659(98)00180-3>