Collect. Czech. Chem. Commun.
2007, 72, 347-362
https://doi.org/10.1135/cccc20070347
Heterocyclization of (Acridin-9-yl)thiosemicarbazides with Dimethyl Acetylenedicarboxylate
Jana Tomaščikováa, Ján Imricha,*, Ivan Danihela, Stanislav Böhmb and Pavol Kristiana
a Institute of Chemistry, Faculty of Science, P. J. Šafárik University, SK-041 67 Košice, Slovak Republic
b Department of Organic Chemistry, Institute of Chemical Technology, Prague, CZ-166 28 Prague 6, Czech Republic
References
1. J. Org. Chem. 1961, 26, 5200.
< B., Tišler M.: https://doi.org/10.1021/jo01070a511>
2. J. Chem. Soc., Perkin Trans. 2 1980, 890.
< R. E., Dominey T. W.: https://doi.org/10.1039/p29800000890>
3. J. Heterocycl. Chem. 1988, 25, 1471.
< J. M., Stewart K. T.: https://doi.org/10.1002/jhet.5570250542>
4. J. Heterocycl. Chem. 1983, 20, 1359.
< W. D., Jr., Kane J. M., Sill A. D.: https://doi.org/10.1002/jhet.5570200540>
5. J. Heterocycl. Chem. 1990, 27, 707.
< Y., Kabashima S., Okawara T., Yamasaki T., Furukawa M.: https://doi.org/10.1002/jhet.5570270343>
6. Mini-Rev. Org. Chem. 2004, 1, 375.
< S. M., Nair V. A., Chittoor J. P., Krishnapillai S.: https://doi.org/10.2174/1570193043403082>
7. Synth. Commun. 1996, 26, 2075.
< C. L., Eggleston D. S., Haltiwanger R. C., Kaura A. C., Tyler J. W.: https://doi.org/10.1080/00397919608003566>
8. Chem. Heterocycl. Compd. 2003, 39, 213.
< V. I., Silin M. A., Kotova I. G., Kobrakov K. I., Rybina I. I., Korolev V. K.: https://doi.org/10.1023/A:1023772509165>
9. Arch. Pharm. 1994, 327, 211.
< A. I., Ragab F. A., El-Ansary S. L., El-Gazayerly F. E., Mourad F. E.: https://doi.org/10.1002/ardp.19943270404>
10. Pharmazie 1992, 47, 796.
N., Rollas S., Sur-Altiner D., Yegenoglu Y., Ang O.:
11. Chem. J. Chinese Univ. 2002, 23, 403.
X. J., Jin G. Y., Yang Z.:
12. Drugs Exp. Clin. Res. 1989, 15, 497.
R. G., Raikov Z. D., Zakhariev S. G., Demirov G. D., Todorov D. K., Ilarionova M. V.:
13. Arch. Pharm. 2000, 333, 347.
< A. R., Sattari S., Bineshmarvasti M., Shafiee A., Daneshtalad M.: https://doi.org/10.1002/1521-4184(200010)333:10<347::AID-ARDP347>3.0.CO;2-6>
14. J. Heterocycl. Chem. 2006, 43, 633.
< K. D., Balentová E., Bernát J., Imrich J., Vavrušová M., Kleinpeter E., Pihlaja K., Koch A.: https://doi.org/10.1002/jhet.5570430317>
15. J. Heterocycl. Chem. 2006, 43, 645.
< E., Imrich J., Bernát J., Suchá L., Vilková M., Prónayová N., Kristian P., Pihlaja K., Klika K. D.: https://doi.org/10.1002/jhet.5570430318>
16. J. Am. Chem. Soc. 1964, 86, 107.
< J. B., Rees R., Templeton J. F.: https://doi.org/10.1021/ja01055a024>
17. Can. J. Chem. 1967, 45, 953.
< J. W., Ma J. C. N.: https://doi.org/10.1139/v67-160>
18. Khim. Geterotsikl. Soedin. 1990, 120.
V. Ya., Liepinsh E. E., Kalvinsh I. Ya., Lukevits E.:
19. Chem. Pharm. Bull. 1973, 21, 279.
< H.: https://doi.org/10.1248/cpb.21.279>
20. Helv. Chim. Acta 1978, 61, 607.
< U., von Philipsborn W., Nagarajan K., Nair M. D.: https://doi.org/10.1002/hlca.19780610207>
21. Russ. J. Org. Chem. (Transl. of Zh. Org. Khim.) 2004, 40, 1047.
< R. I., Zborovskii Yu. L., Staninets V. I., Chernega A. N.: https://doi.org/10.1023/B:RUJO.0000045202.20807.f8>
22. Chem. Rev. 1981, 81, 175.
< S. P., Parmar S. S., Raman K., Stenberg V. I.: https://doi.org/10.1021/cr00042a003>
23. Molecules 1997, 1, 181.
< P., Bernát J., Imrich J., Danihel I., Suchár G., Chomča I., Hočová S., Bušová T., Guspanová J., Linden A.: https://doi.org/10.1007/s007830050036>
24. Int. J. Biol. Macromol. 2006, 38, 94.
< D., Kožurková M., Kristian P., Danihel I., Podhradský D., Imrich J.: https://doi.org/10.1016/j.ijbiomac.2006.01.015>
25. Bioconjugate Chem. 2007, 18, 93.
< L., Sabolová D., Kožurková M., Paulíková H., Kristian P., Ungvarský J., Moravčíková E., Bajdichová M., Podhradský D., Imrich J.: https://doi.org/10.1021/bc060168v>
26. Chem. Zvesti 1961, 15, 641.
P.:
27. Org. Synth. 1942, 22, 5.
A., Ritchie B.:
28. J. Heterocycl. Chem. 2005, 42, 907.
< I., Valtamo P., Imrich J., Kivelä H., Kristian P., Pihlaja K.: https://doi.org/10.1002/jhet.5570420524>
29. Magn. Reson. Chem. 2004, 42, 844.
< M., Kulhánek J., Böhm S., Cigler P., Exner O.: https://doi.org/10.1002/mrc.1414>
30. J. Chem. Phys. 1993, 98, 5648.
< A. D.: https://doi.org/10.1063/1.464913>
31. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hagesawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzales C., Pople J. A.: Gaussian 03, Revision B.05. Gaussian, Inc., Pittsburgh (PA) 2003.
32. J. Am. Chem. Soc. 1990, 112, 8251.
< K., Hinton P. K., Pulay P.: https://doi.org/10.1021/ja00179a005>
33. J. Chem. Phys. 2000, 113, 9402.
< T., Watson M., Handy N. C.: https://doi.org/10.1063/1.1321296>
34. J. Chem. Phys. 2000, 113, 3530.
< V., Grafenstein J., Cremer D.: https://doi.org/10.1063/1.1286806>
35. J. Phys. Chem. A 2002, 106, 5607.
< V., Peralta J., Contreras R. H., Snyder J. P.: https://doi.org/10.1021/jp020212d>
36. Parikrupová S.: M.S. Thesis. P. J. Šafárik University, Košice 2004.