Collect. Czech. Chem. Commun.
2007, 72, 821-898
https://doi.org/10.1135/cccc20070821
A Review on Recent Developments in Syntheses of the post-Secodine Indole Alkaloids. Part II: Modified Alkaloid Types
Josef Hájíčeka,b
a Synthesis Development Group II, Zentiva, a.s., U kabelovny 130, CZ-10237 Prague 10, Czech Republic
b Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, CZ-12840 Prague 2, Czech Republic
References
1. Collect. Czech. Chem. Commun. 2004, 69, 1681.
< J.: https://doi.org/10.1135/cccc20041681>
2. Saxton J. E. (Ed.): Monoterpenoid Indole Alkaloids. Supplement to Part 4. John Wiley & Sons, Chichester 1994.
3. Nat. Prod. Rep. 1999, 16, 319.
< J.: https://doi.org/10.1039/a707500f>
4. Hájíček J.: Manuscript in preparation.
5. Experientia 1965, 21, 508.
< J., Taylor W. I.: https://doi.org/10.1007/BF02138961>
6. Tetrahedron Lett. 2002, 43, 97.
< T., Nakashima H., Sakagami H., Taniguchi T., Ogasawara K.: https://doi.org/10.1016/S0040-4039(01)02075-5>
7. J. Am. Chem. Soc. 1979, 101, 6414.
< S., Hatakeyama S., Ogasawara K.: https://doi.org/10.1021/ja00515a042>
8. Tetrahedron Lett. 1997, 38, 1571.
< S., Mustapha A. M., Hadi A. H. A., Awang K., Wiart C., Gallard J.-F., Pais M.: https://doi.org/10.1016/S0040-4039(97)00152-4>
9. Planta Med. 1983, 48, 280.
< X. Z., Kan C., Potier P., Kan S.-K., Lounasmaa M.: https://doi.org/10.1055/s-2007-969934>
10. Tetrahedron 1998, 54, 13435.
< A. G. H., Yu Q.: https://doi.org/10.1016/S0040-4020(98)00825-4>
11. J. Org. Chem. 1998, 63, 6007.
< O., Taj S.-A., Andersson P. G.: https://doi.org/10.1021/jo9807417>
12. J. Am. Chem. Soc. 1966, 88, 3656.
< J. P., Abdurahman N., Le Quesne P., Piers E., Vlattas I.: https://doi.org/10.1021/ja00967a040>
13. Tetrahedron Lett. 2001, 42, 7311.
< R. M., Ogasawara K.: https://doi.org/10.1016/S0040-4039(01)01538-6>
14. Tetrahedron 1984, 40, 737.
< T. A., Verpoorte R., Baerheim Svendsen A.: https://doi.org/10.1016/S0040-4020(01)91102-0>
15. J. Am. Chem. Soc. 2002, 124, 4628.
< S. A., Iwama T., Huang Y., Rawal V. H.: https://doi.org/10.1021/ja017863s>
16. J. Heterocycl. Chem. 2002, 39, 767.
< J., Kalaus G., Lévai A., Greiner I., Kajtár-Peredy M., Szabó P., Szabó L., Szántay C.: https://doi.org/10.1002/jhet.5570390423>
17. Zhongcaoyao 2003, 34, 390; Chem. Abstr. 2004, 140, 371838.
A., Feng X.:
18. Z. Naturforsch., B 1969, 24, 1665.
< P., Wolf D.: https://doi.org/10.1515/znb-1969-1242>
19. Phytochemistry 1987, 26, 589.
< A.-u., Malik S.: https://doi.org/10.1016/S0031-9422(00)81467-3>
20. Tetrahedron Lett. 1967, 157.
< S., Biemann K., Witkop B.: https://doi.org/10.1016/S0040-4039(00)90507-0>
21. J. Org. Chem. 2002, 67, 7255.
< J., Kalaus G., Greiner I., Kajtár-Peredy M., Szabó P., Keserû G. M., Szabó L., Szántay C.: https://doi.org/10.1021/jo020386r>
22. Phytochemistry 1974, 13, 1621.
< K., Shoeb A., Kapil R. S., Popli S. P.: https://doi.org/10.1016/0031-9422(74)80344-4>
23. Phytochemistry 1988, 27, 1843.
< R., Pedrozo P. J. A., Achenbach H., Bauereiss P.: https://doi.org/10.1016/0031-9422(88)80456-4>
24. Planta Med. 1988, 54, 519.
< G., Liu X., Feng X.: https://doi.org/10.1055/s-2006-962513>
25. Phytochemistry 1998, 49, 1457.
< T. P., Ripperger H., Porzel A., Merzweiler K., Sung T. V., Adam G.: https://doi.org/10.1016/S0031-9422(98)00127-7>
26. Phytochemistry 1995, 40, 313.
< T.-S., Anuradha S.: https://doi.org/10.1016/0031-9422(95)00266-A>
27. J. Prakt. Chem. 1999, 341, 69.
< K., Lien T. P., Sung T. V., Ripperger H., Adam G.: https://doi.org/10.1002/(SICI)1521-3897(199901)341:1<69::AID-PRAC69>3.0.CO;2-6>
28. Z. Naturforsch., B 1983, 38, 1700.
< A.-u., Muzaffar A., Daulatabadi N.: https://doi.org/10.1515/znb-1983-1227>
29. Tetrahedron Lett. 2001, 42, 839.
< G., Rool P., Ferroud C.: https://doi.org/10.1016/S0040-4039(00)02117-1>
30. J. Chem. Soc., Perkin Trans. 1 2000, 2277.
< G., Rool P., Ferroud C.: https://doi.org/10.1039/b001114m>
31. Tetrahedron Lett. 2000, 41, 3489.
< B., Lesma G., Passarella D., Silvani A.: https://doi.org/10.1016/S0040-4039(00)00404-4>
32. J. Org. Chem. 1998, 63, 3492.
< B., Lesma G., Passarella D., Silvani A.: https://doi.org/10.1021/jo972067j>
33. Curr. Org. Chem. 2000, 4, 231.
< B., Lesma G., Passarella D., Silvani A.: https://doi.org/10.2174/1385272003376328>
34. Org. Lett. 2003, 5, 3139.
< M., Escolano C., Lozano O., Llor N., Bosch J.: https://doi.org/10.1021/ol035199+>
35. J. Org. Chem. 2006, 71, 3804.
< M., Escolano C., Lozano O., Gómez-Esqué A., Griera R., Molins E., Bosch J.: https://doi.org/10.1021/jo060157v>
36. Tetrahedron: Asymmetry 1997, 8, 2237.
< M., Llor N., Hidalgo J., Bosch J.: https://doi.org/10.1016/S0957-4166(97)00204-8>
37. Synlett 2001, 1575.
< J., Mirguet O., Gomez Pardo D.: https://doi.org/10.1055/s-2001-17454>
38. Chem. Record 2005, 5, 70.
< J.: https://doi.org/10.1002/tcr.20035>
39. Kuehne M. E., Markó I. in: The Alkaloids (A. Brossi and M. Suffness, Eds), Vol. 37, pp. 77–131. Academic Press, San Diego 1990.
40. Rahman A.-u., Iqbal Z., Nasir H. in: Studies In Natural Products Chemistry (A.-u. Rahman, Ed.), Vol. 14, p. 805. Elsevier, Amsterdam 1994.
41. J. Am. Chem. Soc. 1976, 98, 7017.
< N., Gueritte F., Langlois Y., Potier P.: https://doi.org/10.1021/ja00438a046>
42. J. Nat. Prod. 1980, 43, 72.
< P.: https://doi.org/10.1021/np50007a004>
43. Helv. Chim. Acta 1976, 59, 2858.
< J. P., Hibino T., Jahngen E., Okutani T., Ratcliffe A. H., Treasurywala A. M., Wunderly S.: https://doi.org/10.1002/hlca.19760590824>
44. Tetrahedron Lett. 1976, 17, 2351.
< A.-u., Basha A., Ghazala M.: https://doi.org/10.1016/S0040-4039(00)78774-0>
45. Tetrahedron 1988, 44, 325.
< J., Goodbody A. E., Kutney J. P., Misawa M.: https://doi.org/10.1016/S0040-4020(01)85824-5>
46. Tetrahedron 1991, 47, 1265.
< C., Jr., Balazs M., Bolcskei H., Szantay C.: https://doi.org/10.1016/S0040-4020(01)86383-3>
47. Phytochemistry 1988, 27, 1713.
< A. E., Watson C. D., Chapple C. S. C., Vuković J., Misawa M.: https://doi.org/10.1016/0031-9422(88)80430-8>
48. J. Nat. Prod. 1981, 44, 335.
< S., Cordell G. A.: https://doi.org/10.1021/np50015a017>
49. J. Am. Chem. Soc. 1992, 114, 10232.
< P., Mendoza J. S., Stamford A., Ladlow M., Willis P.: https://doi.org/10.1021/ja00052a020>
50. Helv. Chim. Acta 1975, 58, 1690.
< J. P., Beck J., Bylsma F., Cook J., Cretney W. J., Fuji K., Imhof R., Treasurywala A. M.: https://doi.org/10.1002/hlca.19750580622>
51. Tetrahedron 1987, 43, 3765.
< G., Priester C. U., Windhövel U. F., Fritz H.: https://doi.org/10.1016/S0040-4020(01)86863-0>
52. Tetrahedron 1992, 48, 277.
< R. J., Gadamesatti K. G., Hunt P. J.: https://doi.org/10.1016/S0040-4020(01)88140-0>
53. Bioorg. Med. Chem. Lett. 1994, 4, 1999.
< R. J., Bettiol J.-L., Gadamasetti K. G., Marshalla M., Kelsh L.: https://doi.org/10.1016/S0960-894X(01)80552-7>
54. Tetrahedron 1998, 54, 15739.
< C. A., Dong J.-G., Bornmann W. G., Chang J., Nakanishi K., Berova N.: https://doi.org/10.1016/S0040-4020(98)00988-0>
55. Tetrahedron Lett. 1991, 32, 3035.
< R. J., Desos P., Gadamesatti K. G., Sabat N.: https://doi.org/10.1016/0040-4039(91)80680-5>
56. J. Chem. Soc., Chem. Commun. 1993, 1496.
< E., Tabaković I., Gašić J.: https://doi.org/10.1039/c39930001496>
57. J. Org. Chem. 1997, 62, 947.
< I., Gunić E., Juranić I.: https://doi.org/10.1021/jo9621128>
58. J. Ferment. Bioeng. 1997, 83, 227; Chem. Abstr. 1997, 126, 330739.
< S., Hirata K., Morihara E., Nakae M., Katayama H., Honda M., Miyamoto K.: https://doi.org/10.1016/S0922-338X(97)80984-1>
59. Biotech. Lett. 1997, 19, 53.
< K., Duangteraprecha S., Morihara E., Honda M., Akagi T., Nakae M., Katayama H., Miyamoto K.: https://doi.org/10.1023/A:1018367020754>
60. Org. Lett. 2002, 4, 1151.
< C., Doris E., Rousseau B., Mioskowski C.: https://doi.org/10.1021/ol025560c>
61. J. Org. Chem. 2002, 67, 6571.
< C., Doris E., Rousseau B., Mioskowski C.: https://doi.org/10.1021/jo0202942>
62. Bioorg. Med. Chem. Lett. 2002, 12, 505.
< J., du Boullay V. T., Bigg D. C. H.: https://doi.org/10.1016/S0960-894X(01)00784-3>
63. J. Org. Chem. 1998, 63, 8586.
< B., Lesma G., Martinelli M., Passarella D., Silvani A., Pyuskyulev B., Tam M. N.: https://doi.org/10.1021/jo981269s>
64. Tetrahedron 1998, 54, 6259.
< R. J., Hong J., Smith S. Q., Sabat M., Tabakovic I.: https://doi.org/10.1016/S0040-4020(98)00289-0>
65. J. Org. Chem. 1992, 57, 1752.
< W. G., Kuehne M. E.: https://doi.org/10.1021/jo00032a029>
66. J. Org. Chem. 1982, 47, 3811.
< F. A., Kuehne M. E.: https://doi.org/10.1021/jo00141a001>
67. Tetrahedron 1978, 34, 677.
< R. Z., Langlois N., Potier P., Chiaroni A., Riche C.: https://doi.org/10.1016/0040-4020(78)88103-4>
68. J. Org. Chem. 1991, 56, 513.
< M. E., Bornmann W. G.: https://doi.org/10.1021/jo00002a008>
69. J. Org. Chem. 1989, 54, 3407.
< M. E., Bornmann W. G.: https://doi.org/10.1021/jo00275a029>
70a. Tetrahedron Lett. 1976, 2849.
< R. Z., Langlois N., Potier P.: https://doi.org/10.1016/S0040-4039(01)85518-0>
70b. Helv. Chim. Acta 1980, 63, 793.
< N., Andriamialisoa R. Z., Neuss N.: https://doi.org/10.1002/hlca.19800630407>
71. Tetrahedron Lett. 1967, 811.
< N., Huckstep L. L., Cone N. J.: https://doi.org/10.1016/S0040-4039(00)71568-1>
72. J. Nat. Prod. 1981, 44, 611.
< S., Cordell G. A.: https://doi.org/10.1021/np50017a021>
73. J. Org. Chem. 1996, 61, 1175.
< M. E., Bandarage U. K.: https://doi.org/10.1021/jo951857v>
74. J. Org. Chem. 2001, 66, 1560.
< M. E., Dai W., Li Y.-L.: https://doi.org/10.1021/jo001399c>
75. Org. Biomol. Chem. 2003, 1, 2120.
< M. E., Bornmann W. G., Markó I., Qin Y., LeBoulluec K. L., Frasier D. A., Xu F., Mulamba T., Ensinger C. L., Borman L. S., Huot A. E., Exon C., Bizzarro F. T., Cheung J. B., Bane S. L.: https://doi.org/10.1039/b209990j>
76. J. Org. Chem. 2001, 66, 5303.
< M. E., Cowen S. D., Xu F., Borman L. S.: https://doi.org/10.1021/jo000249z>
77. J. Org. Chem. 2001, 66, 5317.
< M. E., Qin Y., Huot A. E., Bane S. L.: https://doi.org/10.1021/jo000250y>
78. Heterocycles 1989, 28, 951.
< P., Ladlow M., Kim C. S., Boniface P.: https://doi.org/10.3987/COM-88-S108>
79. Tetrahedron Lett. 1992, 33, 899.
< P., Mendoza J.: https://doi.org/10.1016/S0040-4039(00)91570-3>
80. J. Am. Chem. Soc. 1990, 112, 8210.
< P., Stamford A., Ladlow M.: https://doi.org/10.1021/ja00178a079>
81. J. Chem. Soc., Chem. Commun. 1989, 518.
< P., Ladlow M., Elliott J., Kim C. S.: https://doi.org/10.1039/c39890000518>
82. Pearce H. L. in: The Alkaloids (A. Brossi and M. Suffness, Eds), Vol. 37, pp. 145–204. Academic Press, San Diego 1990.
83. Tetrahedron 1979, 35, 2175.
< P., Andriamialisoa R. Z., Lallemand J.-Y., Langlois N., Langlois Y., Potier P.: https://doi.org/10.1016/0040-4020(79)87036-2>
84. Zhongguo Yiyao Gongye Zazhi 1999, 30, 6; Chem. Abstr. 1999, 130, 311964.
Y.-J., Chen H.-M., Li L., Ou J.-B., Liu X.-F.:
85. J. Org. Chem. 1991, 56, 1166.
< P., Thurston L. S.: https://doi.org/10.1021/jo00003a045>
86. J. Am. Chem. Soc. 2002, 124, 2137.
< S., Ueda T., Kobayashi S., Sato A., Kuboyama T., Tokuyama H., Fukuyama T.: https://doi.org/10.1021/ja0177049>
87. Pure Appl. Chem. 2003, 75, 29.
< S., Ueda T., Kobayashi S., Sato A., Kuboyama T., Tokuyama H., Fukuyama T.: https://doi.org/10.1351/pac200375010029>
88. Yuki Gosei Kagaku Kyokaishi (J. Synth. Org. Chem., Jpn.) 2003, 61, 620; Chem. Abstr. 2003, 139, 364704.
< T.: https://doi.org/10.5059/yukigoseikyokaishi.61.620>
89. Yakugaku Zasshi 2003, 123, 1007; Chem. Abstr. 2004, 140, 303422.
< H.: https://doi.org/10.1248/yakushi.123.1007>
90. Angew. Chem., Int. Ed. 2002, 41, 4217.
< C.: https://doi.org/10.1002/1521-3773(20021115)41:22<4217::AID-ANIE4217>3.0.CO;2-U>
91. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 11966.
< T., Yokoshima S., Tokuyama H., Fukuyama T.: https://doi.org/10.1073/pnas.0401323101>
92. Yaoxue Tongbao 1981, 16, 59; Chem. Abstr. 1982, 96, 57625.
Y.:
93. Mini-Rev. Org. Chem. 2004, 1, 333; Chem. Abstr. 2004, 141, 157323.
< O., Guénard D., Guéritte F.: https://doi.org/10.2174/1570193043403226>
94. Bioorg. Med. Chem. 1999, 7, 2961.
< C., Guénard D., Tchertanov L., Thoret S., Guéritte F.: https://doi.org/10.1016/S0968-0896(99)00241-2>
95. Bioorg. Med. Chem. Lett. 1997, 7, 2155.
< B., Sévenet T., Thoison O., Awang K., Païs M., Wright M., Guénard D.: https://doi.org/10.1016/S0960-894X(97)00391-0>
96. Tetrahedron: Asymmetry 1997, 8, 4127.
< J., Soufyane M., Mirand C., de Maindreville M. D., Royer D.: https://doi.org/10.1016/S0957-4166(97)00585-5>
97. Tetrahedron Lett. 1973, 14, 5179.
< A. H., Smith G. F., Smith G. N.: https://doi.org/10.1016/S0040-4039(01)87657-7>
98. Planta Med. 1995, 61, 89.
< M., Mesbah K., Richard B., Moretti C., Nuzillard J. M., Le Men-Olivier L.: https://doi.org/10.1055/s-2006-958014>
99. Tetrahedron Lett. 1972, 10, 913.
< K. T., Ratcliffe A. H., Smith G. F., Smith G. N.: https://doi.org/10.1016/S0040-4039(01)84472-5>
100. Tetrahedron Lett. 1986, 27, 2501.
< S. H., Razak Mohd Ali A.: https://doi.org/10.1016/S0040-4039(00)84568-2>
101. Tetrahedron 1989, 45, 7899.
< S. H., Razak Mohd Ali A., Wong W. H.: https://doi.org/10.1016/S0040-4020(01)85802-6>
102. Bioorg. Med. Chem. 2006, 14, 2314.
< A., Monse B., Martin M.-T., Chiaroni A., Thoret S., Guénard D., Guéritte F., Baudoin O.: https://doi.org/10.1016/j.bmc.2005.11.011>
103. Science 2006, 312, 67.
< K., Sames D.: https://doi.org/10.1126/science.1114731>
104. J. Am. Chem. Soc. 2000, 122, 6321.
< J. A., Sames D.: https://doi.org/10.1021/ja0003223>
105. J. Am. Chem. Soc. 2002, 124, 6900.
< J. A., Li N., Sames D.: https://doi.org/10.1021/ja026130k>
106. J. Chem. Soc., Perkin Trans. 1 2000, 1497.
< M., Edwards A., Smith J., Hamel E., Verdier-Pinard P.: https://doi.org/10.1039/b001731k>
107. Org. Biomol. Chem. 2003, 1, 296.
< M. G., Edwards A. J., Jolliffe K. A., Smith J. A., Hamel E., Verdier-Pinard P.: https://doi.org/10.1039/b209992f>
108. Nat. Prod. Lett. 1998, 12, 307.
< T.-S., Tee Y.-M., Subramanian G.: https://doi.org/10.1080/10575639808048307>
109. Arkivoc 2006, III, 163.
M. G., Beck D. A. S., Willis A. C.:
110. J. Am. Chem. Soc. 2006, 128, 10352.
< Z., Wasmuth A. S., Nelson S. G.: https://doi.org/10.1021/ja0629110>
111. Tetrahedron 2001, 57, 8647.
< P., Rainey T.: https://doi.org/10.1016/S0040-4020(01)00859-6>
112. Org. Lett. 2005, 7, 5207.
< A. L., Jr., Hughes C. C., Trauner D.: https://doi.org/10.1021/ol052033v>
113. Baudoin O., Guéritte F. in: Studies in Natural Products Chemistry (Bioactive Natural Products (Part J)) (Atta-ur-Rahmán, Ed.), Vol. 29, pp. 355–418. Elsevier, Amsterdam 2003.
114. Bioorg. Med. Chem. Lett. 2005, 15, 1045.
< H., Awang K., Hadi A. H. A., Takeya K., Itokawa H., Kobayashi J.: https://doi.org/10.1016/j.bmcl.2004.12.027>
115. Tetrahedron Lett. 2000, 41, 5853.
< C., Guénard D., Thal C., Thoret S., Guéritte F.: https://doi.org/10.1016/S0040-4039(00)00983-7>
116. Bioorg. Med. Chem. Lett. 1991, 1, 725.
< J.-P., Millet-Paillusson C., Boyé O., Guénard D., Chiaroni A., Riche C., Thal C.: https://doi.org/10.1016/S0960-894X(01)81056-8>
117. Bull. Soc. Chim. Fr. 1996, 133, 251.
J.-P., Millet-Paillusson C., Guénard D., Thal C.:
118. Tetrahedron 1998, 54, 14737.
< C., Dubois J., Guénard D., Tchertanov L., Thoret S., Guéritte F.: https://doi.org/10.1016/S0040-4020(98)00903-X>
119. Bioorg. Med. Chem. 2002, 10, 3395.
< O., Claveau F., Thoret S., Herrbach A., Guénard D., Guéritte F.: https://doi.org/10.1016/S0968-0896(02)00270-5>
120. J. Org. Chem. 2003, 68, 4897.
< A., Marinetti A., Baudoin O., Guénard D., Guéritte F.: https://doi.org/10.1021/jo034298y>
121. J. Org. Chem. 1998, 63, 6414.
< C., Dubois J., Guénard D., Guéritte F.: https://doi.org/10.1021/jo980697v>
122. Synth. Commun. 1997, 27, 1501.
< C., Guéritte/Voegelein F., Thal C., Guénard D.: https://doi.org/10.1080/00397919708006086>
123. J. Org. Chem. 2001, 66, 2654.
< E., Rocca P., Richalot S., Guéritte F., Guénard D., Godard A., Marsais F., Quéguiner G.: https://doi.org/10.1021/jo0014156>
124. Org. Biomol. Chem. 2007, 5, 175.
< A.-L., Robert N., Hoarau C., Baudoin O., Marsais F.: https://doi.org/10.1039/b613173e>
125. J. Org. Chem. 1991, 56, 2915.
< P., Kunesch N., Liu S., Wenkert E.: https://doi.org/10.1021/jo00008a060>
126. J. Org. Chem. 1994, 59, 7677.
< E., Liu S.: https://doi.org/10.1021/jo00104a023>
127. Helv. Chim. Acta 1963, 46, 742.
< C., Budzikiewicz H., Owellen R. J., Wilson J. M., Kump W. G., Le Count D. J., Battersby A. R., Schmid H.: https://doi.org/10.1002/hlca.19630460306>
128. Synth. Commun. 1992, 22, 189.
< M., Gramain J.-C., Husson H.-P., Sinibaldi M.-E., Troin Y.: https://doi.org/10.1080/00397919208021293>
129. J. Org. Chem. 1990, 55, 5483.
< M., Gramain J.-C., Husson H.-P., Sinibaldi M.-E., Troin Y.: https://doi.org/10.1021/jo00307a019>
130. Tetrahedron Lett. 2000, 41, 9369.
< P., Westlund N.: https://doi.org/10.1016/S0040-4039(00)01399-X>
131. Tetrahedron Lett. 2000, 41, 2077.
< P., Payne A. H., Hobson L.: https://doi.org/10.1016/S0040-4039(00)00118-0>
132. Tetrahedron 2002, 58, 3423.
< P., Gazzard L., Hobson L., Payne A. H., Rainey T. J., Westlund N., Lynch V.: https://doi.org/10.1016/S0040-4020(02)00243-0>
133. Phytochemistry 1997, 46, 785.
< T.-S., Yoganathan K.: https://doi.org/10.1016/S0031-9422(97)00350-6>
134. Phytochemistry 1998, 47, 145.
< T.-S., Sim K.-M: https://doi.org/10.1016/S0031-9422(97)00513-X>
135. Helv. Chim. Acta 1982, 65, 2548.
< K., Hesse M.: https://doi.org/10.1002/hlca.19820650825>
136. Nat. Prod. Lett. 1993, 3, 291; Chem. Abstr. 1994, 121, 179938.
< C., Quirion J.-C., Husson H.-P.: https://doi.org/10.1080/10575639308043879>
137. Tetrahedron Lett. 1993, 34, 1819.
< T.-S., Yoganathan K., Chuah C.-H.: https://doi.org/10.1016/S0040-4039(00)60788-8>
138. Phytochemistry 1997, 45, 623.
< T.-S., Yoganathan K., Chuah C.-H.: https://doi.org/10.1016/S0031-9422(96)00870-9>
139. Tetrahedron Lett. 1995, 36, 1327.
< G.-H., Lim T.-M., Kam T.-S.: https://doi.org/10.1016/0040-4039(94)02468-Q>
140. J. Chem. Soc., Perkin Trans. 1 2001, 1594.
< T.-S., Lim T.-M., Tan G.-H.: https://doi.org/10.1039/b103962h>
141. Phytochemistry 1996, 42, 539.
< T.-S., Yoganathan K.: https://doi.org/10.1016/0031-9422(95)00920-5>
142. J. Nat. Prod. 1998, 61, 328.
< S.-L., Yoganathan K., Lim T.-M., Kam T. S.: https://doi.org/10.1021/np9703712>
143. Tetrahedron Lett. 1994, 35, 4457.
< T.-S., Yoganathan K., Chuah C. H.: https://doi.org/10.1016/S0040-4039(00)73383-1>
144. J. Nat. Prod. 1996, 59, 1109.
< T.-S., Yoganathan K., Chen W.: https://doi.org/10.1021/np960538b>
145. Heterocycles 1999, 51, 249.
< T. S., Lim T.-M., Tan G.-H.: https://doi.org/10.3987/COM-98-8400>
146. J. Org. Chem. 2001, 66, 4704.
< D. B., Kuss T. D. O., Keddy R. G., Kerr M. A.: https://doi.org/10.1021/jo015643r>
147. Tetrahedron Lett. 1997, 38, 5949.
< P., Kerr M. A.: https://doi.org/10.1016/S0040-4039(97)01351-8>
148. Tetrahedron Lett. 1999, 40, 5671.
< M. A., Keddy R. G.: https://doi.org/10.1016/S0040-4039(99)01107-7>
149. Synlett 1995, 507.
< P. J., Penkett C. S., Cramp M. C., West R. I., Warrington J., Saraiva M. C.: https://doi.org/10.1055/s-1995-5278>
150. Tetrahedron 1996, 52, 647.
< P. J., Penkett C. S., Cramp M. C., West R. I., Warren E. S.: https://doi.org/10.1016/0040-4020(95)00915-9>
151. Tetrahedron Lett. 2003, 44, 1317.
< T.-S., Choo Y.-M.: https://doi.org/10.1016/S0040-4039(02)02616-3>
152. Helv. Chim. Acta 2004, 87, 991.
< T.-S., Choo Y.-M.: https://doi.org/10.1002/hlca.200490092>
153. Org. Lett. 2006, 8, 5141.
< X., France S., Mejía-Oneto J. M., Padwa A.: https://doi.org/10.1021/ol062029z>
154. Chem. Rev. 1996, 96, 223.
< A., Weingarten M. D.: https://doi.org/10.1021/cr950022h>
155. Pure Appl. Chem. 2004, 76, 1933.
< A.: https://doi.org/10.1351/pac200476111933>
156. Org. Lett. 2006, 8, 3275.
< J. M., Padwa A.: https://doi.org/10.1021/ol061137i>
157. Tetrahedron Lett. 1999, 40, 5135.
< P., Gazzard L., Hobson L., Payne A. H., Lynch V.: https://doi.org/10.1016/S0040-4039(99)00882-5>
158. Org. Lett. 1999, 1, 1749.
< M. E., Li Y.-L.: https://doi.org/10.1021/ol9910215>
159. Org. Lett. 2000, 2, 97.
< M. E., Li Y.-L.: https://doi.org/10.1021/ol991235m>
160. Tetrahedron Lett. 2001, 42, 993.
< P., Hobson L. A., Westlund N., Lynch V.: https://doi.org/10.1016/S0040-4039(00)02218-8>
161. Tetrahedron Lett. 1987, 28, 3679.
< N., Likhitwitayawuid K., Jongbunprasert V., Ponglux D., Aimi N., Ogata K., Yasuoka M., Haginiwa J., Sakai S.-i.: https://doi.org/10.1016/S0040-4039(00)96353-6>
162. Tetrahedron Lett. 1996, 37, 5765.
< T.-S., Yoganathan K., Koyano T., Komiyama K.: https://doi.org/10.1016/0040-4039(96)01180-X>
163. J. Org. Chem. 2000, 65, 6434.
< M. E., Li Y.-L., Wei C.-Q.: https://doi.org/10.1021/jo000398h>
164. J. Org. Chem. 1979, 44, 2468.
< N., Andriamialisoa R. Z.: https://doi.org/10.1021/jo01328a028>
165. J. Am. Chem. Soc. 2001, 123, 6724.
< W. H., Mi Y., Lee I. Y., Stoy P.: https://doi.org/10.1021/ja016007d>
166. J. Org. Chem. 2004, 69, 9109.
< W. H., Mi Y., Lee I. Y., Stoy P.: https://doi.org/10.1021/jo048917u>
167. Pure Appl. Chem. 2002, 74, 1339.
< W. H.: https://doi.org/10.1351/pac200274081339>
168. Synlett 2003, 903.
< W. H.: https://doi.org/10.1055/s-2003-39285>
169. Tetrahedron Lett. 1992, 33, 2493.
< K., Sevenet T., Hadi A. H. A., David B., Pais M.: https://doi.org/10.1016/S0040-4039(00)92223-8>
170. J. Nat. Prod. 1993, 56, 1134.
< K., Sevenet T., Pais M., Hadi A. H. A.: https://doi.org/10.1021/np50097a018>
171. Synlett 2004, 907.
T., Arai S., Nishida A.:
172. Tetrahedron Lett. 1998, 39, 5823.
< T.-S., Lim T.-M., Choo Y.-M., Subramaniam G.: https://doi.org/10.1016/S0040-4039(98)01150-2>
173. Phytochemistry 1999, 52, 959.
< T.-S., Choo Y.-M., Chen W., Yao J.-X.: https://doi.org/10.1016/S0031-9422(99)00265-4>
174. Tetrahedron 1999, 55, 1457.
< T.-S., Lim T.-M., Choo Y.-M.: https://doi.org/10.1016/S0040-4020(98)01125-9>