Collect. Czech. Chem. Commun. 2008, 73, 591-607
https://doi.org/10.1135/cccc20080591

DFT and Docking Study of Potential Transition State Analogue Inhibitors of Glycosyltransferases

Lucie Sihelniková, Stanislav Kozmon and Igor Tvaroška*

Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia

References

1. Beyer T. A., Sadler J. E., Rearick J. I., Paulson J. C., Hill R. L.: Adv. Enzymol. 1981, 2, 23.
2. Schachter H.: Curr. Opin. Struct. Biol. 1991, 1, 755. <https://doi.org/10.1016/0959-440X(91)90175-S>
3. Montreuil J., Vliegenthart J. F. G., Schachter H. in: Glycoproteins (A. Neuberger and L. L. M. van Deenen, Eds), Vol. 29a. Elsevier, Amsterdam 1995.
4. Wilson I. B. H., Breton C., Imberty A., Tvaroška I. in: Glycoscience Chemistry and Chemical Biology (B. O. Fraser-Reid, K. Tatsuta, J. Thiem, G. L. Coté, S. Flitsch, Y. Ito, H. Kondo, S. Nishimura and B. Yu, Eds). Springer-Verlag, Berlin 2008.
5. Maseras F., Morokuma K.: J. Comput. Chem. 1995, 16, 1170. <https://doi.org/10.1002/jcc.540160911>
6. Varki A.: Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, New York 1999.
7. Dennis J. W., Granovsky M., Warren C. E.: BioEssays 1999, 21, 412. <https://doi.org/10.1002/(SICI)1521-1878(199905)21:5<412::AID-BIES8>3.0.CO;2-5>
8. Dwek R. A.: Chem. Rev. 1996, 96, 683. <https://doi.org/10.1021/cr940283b>
9. Dennis J. W.: Semin. Cancer Biol. 1991, 2, 411.
10. Wang R., Steensma D. H., Takaoka Y., Yun J. W., Kajimoto T., Wong C.-H.: Bioorg. Med. Chem. 1997, 5, 661. <https://doi.org/10.1016/S0968-0896(97)00005-9>
11. Compain P., Martin O. R.: Bioorg. Med. Chem. 2001, 9, 3077. <https://doi.org/10.1016/S0968-0896(01)00176-6>
12. Compain P., Martin O. R.: Curr. Med. Chem. 2003, 3, 541. <https://doi.org/10.2174/1568026033452474>
13. Pauling L.: Am. J. Sci. 1948, 36, 51.
14. Wolfenden R.: Nature 1969, 223, 704. <https://doi.org/10.1038/223704a0>
15. Schramm V. L.: Annu. Rev. Biochem. 1998, 67, 693. <https://doi.org/10.1146/annurev.biochem.67.1.693>
16. Tvaroška I., Andre I., Carver J. P.: J. Am. Chem. Soc. 2000, 122, 8762. <https://doi.org/10.1021/ja001525u>
17. Tvaroška I., Andre I., Carver J. P.: Glycobiology 2003, 13, 559. <https://doi.org/10.1093/glycob/cwg067>
18. Kozmon S., Tvaroška I.: J. Am. Chem. Soc. 2006, 128, 16921. <https://doi.org/10.1021/ja065944o>
19. Unligil U. M., Zhou S. H., Yuwaraj S., Sarkar M., Schachter H., Rini J. M.: EMBO J. 2000, 19, 5269. <https://doi.org/10.1093/emboj/19.20.5269>
20. Raab M., Kozmon S., Tvaroska I.: Carbohydr. Res. 2005, 340, 1051. <https://doi.org/10.1016/j.carres.2005.01.041>
21. Csúsz B., Hirsch J., Koóš M., Mucha J., Tvaroška I.: Chem. Pap. 2008, 63, submitted.
22. Mucha J.: Unpublished results.
23. Jaguar 5.5, Release 11 (Schrödinger). Portland, Oregon 2004.
24. Becke A. D.: Phys. Rev. A 1988, 38, 3098. <https://doi.org/10.1103/PhysRevA.38.3098>
25. Perdew J. P.: Phys. Rev. B 1986, 33, 8822. <https://doi.org/10.1103/PhysRevB.33.8822>
26. Baker J., Jarzecki A. A., Pulay P.: J. Phys. Chem. A 1998, 102, 1412. <https://doi.org/10.1021/jp980038m>
27. Cramer C. J.: Essentials of Computational Chemistry. Theories and Models. Wiley, Chichester 2002.
28. Tannor D. J., Marten B., Murphy R., Friesner R. A., Sitkoff D., Nicholls A., Ringnalda M., Goddard W. A., Honig B.: J. Am. Chem. Soc. 1994, 116, 11875. <https://doi.org/10.1021/ja00105a030>
29. Marten B., Kim K., Cortis C., Friesner R. A., Murphy R. B., Ringnalda M. N., Sitkoff D., Honig B.: J. Phys. Chem. 1996, 100, 11775. <https://doi.org/10.1021/jp953087x>
30. First Discovery 2.7 (Schrödinger). Portland, Oregon 2004.
31. Eldridge M. D., Murray C. W., Auton T. R., Paolini G. V., Mee R. P.: J. Comput.-Aided Mol. Des. 1997, 11, 425. <https://doi.org/10.1023/A:1007996124545>
32. Tvaroska I., Carver J. P.: J. Phys. Chem. 1996, 100, 11305. <https://doi.org/10.1021/jp9610426>
33. Tvaroska I., Bleha T.: Adv. Carbohydr. Chem. Biochem. 1989, 47, 45. <https://doi.org/10.1016/S0065-2318(08)60412-6>