Collect. Czech. Chem. Commun. 2008, 73, 862-872
https://doi.org/10.1135/cccc20080862

Application of Berlin's Theorem to Bond-Length Changes in Isolated Molecules and Red- and Blue-Shifting H-Bonded Clusters

Weizhou Wang and Pavel Hobza*

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. and Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

References

1. Frenking G.: Angew. Chem. Int. Ed. 2003, 42, 143. <https://doi.org/10.1002/anie.200390069>
2. Gillespie R. J., Popelier P. L. A.: Angew. Chem. Int. Ed. 2003, 42, 3331. <https://doi.org/10.1002/anie.200320066>
3. Bader R. F. W.: Chem. Eur. J. 2006, 12, 7769. <https://doi.org/10.1002/chem.200600515>
4. Frenking G.: Chem. Eur. J. 2006, 12, 7773. <https://doi.org/10.1002/chem.200600909>
5. Berlin T.: J. Chem. Phys. 1951, 19, 208. <https://doi.org/10.1063/1.1748161>
6. Spackman M. A., Maslen E. N.: Acta Crystallogr., Sect. A: Fundam. Crystallogr. 1985, 41, 347. <https://doi.org/10.1107/S0108767385000745>
7. Bader R. F. W.: J. Am. Chem. Soc. 1964, 86, 5070. <https://doi.org/10.1021/ja01077a005>
8. Koga T., Nakatsuji H., Yonezawa T.: J. Am. Chem. Soc. 1978, 100, 7522. <https://doi.org/10.1021/ja00492a014>
9. Fajans K.: Chem. Eng. News 1949, 27, 900. <https://doi.org/10.1021/cen-v027n013.p900>
10. Christen D., Gupta O. D., Kadel J., Kirchmeier R. L., Mack H. G., Oberhammer H., Shreeve J. M.: J. Am. Chem. Soc. 1991, 113, 9131. <https://doi.org/10.1021/ja00024a016>
11. Politzer P., Habibollahzadeh D.: J. Chem. Phys. 1993, 98, 7659. <https://doi.org/10.1063/1.464679>
12. Kaupp M., Metz B., Stoll H.: Angew. Chem. Int. Ed. 2000, 39, 4607. <https://doi.org/10.1002/1521-3773(20001215)39:24<4607::AID-ANIE4607>3.0.CO;2-L>
13. Scheiner S.: Hydrogen Bonding. Oxford University Press, New York 1997.
14. Hobza P., Špirko V., Selzle H. L., Schlag E. W.: J. Phys. Chem. A 1998, 102, 2501. <https://doi.org/10.1021/jp973374w>
15. Hobza P., Havlas Z.: Chem. Rev. 2000, 100, 4253. <https://doi.org/10.1021/cr990050q>
16. Gu Y., Kar T., Scheiner S.: J. Am. Chem. Soc. 1999, 121, 9411. <https://doi.org/10.1021/ja991795g>
17. Scheiner S., Kar T.: J. Phys. Chem. A 2002, 106, 1784. <https://doi.org/10.1021/jp013702z>
18. Hermansson K.: J. Phys. Chem. A 2002, 106, 4695. <https://doi.org/10.1021/jp0143948>
19. Li X., Liu L., Schlegel H. B.: J. Am. Chem. Soc. 2002, 124, 9639. <https://doi.org/10.1021/ja020213j>
20. Alabugin I. V., Manoharan M., Peabody S., Weinhold F.: J. Am. Chem. Soc. 2003, 125, 5973. <https://doi.org/10.1021/ja034656e>
21. McDowell S. A. C., Buckingham A. D.: J. Am. Chem. Soc. 2005, 127, 15515. <https://doi.org/10.1021/ja0543651>
22. Joseph J., Jemmis E. D.: J. Am. Chem. Soc. 2007, 129, 4620. <https://doi.org/10.1021/ja067545z>
23. Feng Y., Liu L., Wang J. T., Li X. S., Guo Q. X.: Chem. Commun. 2004, 1, 88. <https://doi.org/10.1039/b310723j>
24. Wang W. Z., Wong N. B., Zheng W. X., Tian A. M.: J. Phys. Chem. A 2004, 108, 1799. <https://doi.org/10.1021/jp036769q>
25. Wang W. Z., Hobza P.: J. Phys. Chem. A 2008, 112, 4114. <https://doi.org/10.1021/jp710992h>
26. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian03, Revision C.02. Gaussian Inc., Wallingford (CT) 2004.
27. Dunning T. H.: J. Chem. Phys. 1989, 90, 1007. <https://doi.org/10.1063/1.456153>
28. Dennington R., Jr., Keith T., Millam J., Eppinnett K., Hovell W. L., Gilliland R.: GaussView. Semichem Inc., Shawnee Mission (KS) 2003.
29. Reed A. E., Curtiss L. A., Weinhold F.: Chem. Rev. 1988, 88, 899. <https://doi.org/10.1021/cr00088a005>
30. Wang S.-C., Sahu P. K., Lee S.-L.: Chem. Phys. Lett. 2005, 406, 143. <https://doi.org/10.1016/j.cplett.2005.02.070>