Collect. Czech. Chem. Commun. 2008, 73, 1112-1124
https://doi.org/10.1135/cccc20081112

Synthesis of Fructone and Acylal Using Hexagonally Ordered Mesoporous Aluminosilicate Catalyst

Ajayan Vinua,b,*, Josena Justusa, Veerappan Vaithilingam Balasubramaniana, Shivappa Basappa Halligudia, Katsuhiko Arigaa and Toshiyuki Morib

a International Center for Materials Nanoarchitectonics, World Premier International Research Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
b Nano-Ionics Materials Group, Fuel Cell Materials Center, 1-1 Namiki, Tsukuba 305-0044, Japan

References

1. Pinnick H. W., Kochhar K. S., Deshpande R. P., Rajadhyaksha S. N.: J. Org. Chem. 1983, 48, 1765.
2. Gregory M. J.: J. Am. Chem. Soc. 1970, 1201.
3. Greene T. W., Wuts P. G. M.: Protective Groups in Organic Synthesis, 2nd ed., p. 184. Wiley, New York 1991.
4. Bauer K., Garbe D., Surburg H.: Common Fragrances and Flavor Materials, 2nd ed. VCH, New York 1990.
5. Burdock G. A.: Fenarolias Hanbook of Flavor Ingredients, Vol. II. CRC, New York 1995.
6a. Snider B. B., Amin S. G.: Synth. Commun. 1978, 8, 117. <https://doi.org/10.1080/00397917808062105>
6b. Held H. I., Rengstl A., Mayer D. in: Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed. (F. T. Campbell, R. Pfefferkon and J. F. Rounsaville, Eds), Vol. Al, p. 65. VCH, Weinheim 1985.
7. Seebach D., Imwinkelried R., Weber T. in: Modern Synthetic Methods (R. Scheffold, Ed.), p. 125. Springer Verlag, Berlin 1996.
8a. Sandberg M., Sydnes L. K.: Tetrahedron Lett. 1998, 39, 6361. <https://doi.org/10.1016/S0040-4039(98)01309-4>
8b. Heerden F. R., Huyser J. J., Williams B. D. G., Holzapfel C. W.: Tetrahedron Lett. 1998, 39, 5281. <https://doi.org/10.1016/S0040-4039(98)01000-4>
9. Ashton M. J., Lawrence C., Karlsson J. A., Stuttle K. A. J., Newton C. G., Vacher B. Y. J., Webber S., Withnall M. J.: J. Med. Chem. 1996, 39, 4888. <https://doi.org/10.1021/jm9604639>
10. Vu Moc T., Maitte P.: Bull. Soc. Chim. Fr. 1975, 9, 2558.
11a. Tong-Shuang L., Sheng-Hui L., Ji-Tai L., Hui-Zhang L.: J. Chem. Res., Synop. 1997, 1, 26.
11b. Csiba M., Cleophax J., Loupy A., Malthete J., Gero S. D.: Tetrahedron Lett. 1993, 34, 1787. <https://doi.org/10.1016/S0040-4039(00)60779-7>
12a. Corma A., Climent M. J., García H., Primo J.: Appl. Catal. 1990, 59, 333. <https://doi.org/10.1016/S0166-9834(00)82207-1>
12b. Ballini R., Bosica G., Frullanti B., Maggi R., Sartori G., Schroer F.: Tetrahedron Lett. 1998, 39, 1615. <https://doi.org/10.1016/S0040-4039(97)10831-0>
12c. Rodriguez I., Climent M. J., Corma A., Iborra S., Fornés V.: J. Catal. 2000, 192, 441. <https://doi.org/10.1006/jcat.2000.2861>
13. Climent M. J., Corma A., Velty A., Susarte M.: J. Catal. 2000, 196, 345. <https://doi.org/10.1006/jcat.2000.3044>
14. Cherkaev G., Timonin S. A., Yakovleva G. F., Shutikova L., Mikhailova A. S., Shapiro L. D.: U.S.S.R. 1,337,384 (1987); Chem. Abstr. 1987, 109, 92480.
15. Climent M. J., Velty A., Corma A.: Green Chem. 2002, 4, 565. <https://doi.org/10.1039/b207506g>
16. Ford R. A., Letizia C.: Food Chem. Toxicol. 1988, 26, 315.
17. Climent M. J., Corma A., Velty A.: Appl. Catal., A 2004, 262, 155. <https://doi.org/10.1016/j.apcata.2003.12.007>
18. Wang J., Yan L., Qian G., Yang K., Liua H., Wang X.: Tetrahedron Lett. 2006, 47, 8309. <https://doi.org/10.1016/j.tetlet.2006.09.090>
19. Molecular dimensions of the hemiacetal and fructone were calculated with: Cerius 2 Visualizer Program, Version 3.8. Molecular Simulations Inc., San Diego 1999.
20. Camblor M. A., Corma A., Iborra S., Miguel S., Primo J., Valencia S.: J. Catal. 1997, 172, 76. <https://doi.org/10.1006/jcat.1997.1837>
21. Kumar P., Hedge V. R., Kumar T. P.: Tetrahedron Lett. 1995, 36, 601; and references therein. <https://doi.org/10.1016/0040-4039(94)02292-J>
22. Frick J. G., Jr., Harper P. J., Jr.: Appl. Polym. Sci. 1984, 29, 1433. <https://doi.org/10.1002/app.1984.070290436>
23a. Gregory M. J.: J. Chem. Soc. B 1970, 1201. <https://doi.org/10.1039/j29700001201>
23b. Freeman F., Karcherski E. M.: J. Chem. Eng. Data 1977, 22, 355. <https://doi.org/10.1021/je60074a038>
23c. Michie J. K., Miller J. A.: Synthesis 1981, 824. <https://doi.org/10.1055/s-1981-29613>
23d. Daka N., Borah R., Kalita D. J., Sarma J. C.: J. Chem. Res., Synop. 1988, 94.
23e. Scribine I.: Bull. Soc. Chem. Fr. 1961, 1194.
23f. Deka N., Kalita D. J., Borah R., Sarma J. C.: J. Org. Chem. 1997, 62, 1563. <https://doi.org/10.1021/jo961741e>
23g. Jin T.-S., Du G.-Y., Li T.-S.: Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1998, 939.
23h. Li Y.-Q.: Synth. Commun. 2000, 30, 3913. <https://doi.org/10.1080/00397910008086948>
23i. Karimi B., Seradj H., Ebrahimian G. R.: Synlett 2000, 623.
24a. Pereira C., Gigante B., Marcelo Curto M. J., Carreyra H., Perot G., Guisnat M.: Synthesis 1995, 1077. <https://doi.org/10.1055/s-1995-4073>
24b. Rajn S. V.: J. Chem. Res., Synop. 1996, 68.
24c. Joshi M. V., Narasimbam C. S.: J. Catal. 1993, 141, 308. <https://doi.org/10.1006/jcat.1993.1138>
24d. Jin T. S., Ma Y. R., Zhang Z. H., Li T. S.: Synth. Commun. 1997, 3379. <https://doi.org/10.1080/00397919708005638>
24e. Ballini R., Bordoni B., Bosica G., Maggi R., Sartori G.: Tetrahedron Lett. 1998, 39, 7587. <https://doi.org/10.1016/S0040-4039(98)01649-9>
24f. Curini M., Epifano F., Marcotullio M. C., Rosati O., Nocchetti M.: Tetrahedron Lett. 2002, 43, 2709. <https://doi.org/10.1016/S0040-4039(02)00369-6>
25a. Chandra K. L., Saravanan P., Singh V. K.: Synlett 2000, 359.
25b. Aggarwal V. K., Fonquerna S., Vennall G. P.: Synlett 1998, 849. <https://doi.org/10.1055/s-1998-1799>
25c. Carrigan M. D., Eash K. J., Oswald M. C., Mohan R. S.: Tetrahedron Lett. 2001, 42, 8133. <https://doi.org/10.1016/S0040-4039(01)01756-7>
25d. Ranu B. C., Dutta J., Das A.: Chem. Lett. 2003, 32, 366. <https://doi.org/10.1246/cl.2003.366>
25e. Smitha G., Sanjeeva Reddy Ch.: Tetrahedron 2003, 9571. <https://doi.org/10.1016/j.tet.2003.10.002>
25f. Aggen D. H., Arnold J. N., Hayes P. D., Smoter N. J., Mohan R. S.: Tetrahedron 2004, 60, 3675. <https://doi.org/10.1016/j.tet.2004.02.046>
26. Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S.: Nature 1992, 359, 710. <https://doi.org/10.1038/359710a0>
27. Schimidt R., Akporiaye D., Stöcker M., Ellestad O. H.: Chem. Commun. 1994, 1493. <https://doi.org/10.1039/c39940001493>
28. Luan Z., Cheng C. F., He H., Klinowski J.: J. Phys. Chem. 1995, 99, 10590. <https://doi.org/10.1021/j100026a023>
29. Busio M., Janchen J., van Hooff J. H. C.: Microporous Mater. 1995, 5, 211. <https://doi.org/10.1016/0927-6513(95)00063-1>
30. Weglarski J., Datka J., He H., Klinowski J.: J. Chem. Soc., Faraday Trans. 1996, 92, 5161. <https://doi.org/10.1039/ft9969205161>
31. Mokaya R., Jones W., Luan Z. H., Alba M. D., Klinowski J.: Catal. Lett. 1996, 37, 112. <https://doi.org/10.1007/BF00813528>
32. Mokaya R., Jones W.: J. Chem. Soc., Chem. Commun. 1996, 981. <https://doi.org/10.1039/cc9960000981>
33. Mokaya R., Jones W.: J. Chem. Soc., Chem. Commun. 1996, 983. <https://doi.org/10.1039/cc9960000983>
34. Mokaya R., Jones W.: J. Catal. 1997, 172, 211. <https://doi.org/10.1006/jcat.1997.1851>
35. Mokaya R., Jones W.: J. Mater. Chem. 1998, 8, 2819. <https://doi.org/10.1039/a806049e>
36. Vinu A., Usha Nandhini K., Murugesan V., Umamaheswari V., Pöppl A., Hartmann M.: Appl. Catal., A 2004, 265, 1. <https://doi.org/10.1016/j.apcata.2003.12.044>
37. Vinu A., Ariga K., Saravanamurugan M., Hartmann M., Murugesan V.: Microporous Mesoporous Mater. 2004, 76, 91. <https://doi.org/10.1016/j.micromeso.2004.07.036>
38. Vinu A., Krithiga T., Murugesan V., Hartmann M.: Adv. Mater. 2004, 20, 1817. <https://doi.org/10.1002/adma.200400229>
39. Oye G., Sjöblom J., Stöcker M.: Microporous Mesoporous Mater. 1999, 27, 171. <https://doi.org/10.1016/S1387-1811(98)00251-0>
40. Bonelli B., Onida B., Chen J. D., Galarneau A., Di Renzo F., Fajula F., Garrone E.: Microporous Mesoporous Mater. 2004, 67, 95. <https://doi.org/10.1016/j.micromeso.2003.10.007>
41. DiRenzo F., Chiche B., Fajula F., Viale S., Garrone E.: Stud. Surf. Sci. Catal. 1996, 101, 851. <https://doi.org/10.1016/S0167-2991(96)80296-5>
42. Zhao D., Huo Q., Feng J., Chmelka B. F., Stucky G. D.: J. Am. Chem. Soc. 1998, 120, 6024. <https://doi.org/10.1021/ja974025i>
43. Yang P., Zhao D., Margolese D., Chmelka B. F., Stucky G. D.: Nature 1998, 396, 152. <https://doi.org/10.1038/24132>
44. Yang P., Zhao D., Margolese D., Chmelka B. F., Stucky G. D.: Chem. Mater. 1999, 11, 2831.
45. Hartmann M., Vinu A.: Langmuir 2002, 18, 8010. <https://doi.org/10.1021/la025782j>
46. Yue Y., Gédéon A., Bonardet J. -L., Melosh N., D’Espinose J.-B., Fraissard J.: Chem. Commun. 1999, 1967. <https://doi.org/10.1039/a904467a>
47. Vinu A., Böhlmann W., Murugesan V., Hartmann M.: J. Phys. Chem. B 2004, 108, 11496. <https://doi.org/10.1021/jp048411f>
48. Satish Kumar G., Vinu A., Ariga K., Palanichamy M., Murugesan V.: J. Mol. Catal. A: Chem. 2005, 235, 57.
49. Vinu A., Devassy B. M., Halligudi S. B., Bohlmann W., Hartmann M.: Appl. Catal., A 2005, 281, 207. <https://doi.org/10.1016/j.apcata.2004.11.031>