Collect. Czech. Chem. Commun. 2009, 74, 147-166
https://doi.org/10.1135/cccc2008065
Published online 2009-01-29 18:12:29

The close relation between cyclic delocalization, energy effects of cycles and aromaticity

Robert Poneca,*, Stijn Fiasb, Sofie Van Dammeb, Patrick Bultinckb, Ivan Gutmanc and Sonja Stankovićc

a Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, v.v.i., 165 02 Prague 6-Suchdol, Czech Republic
b Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium
c Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia

References

1. Bergman E. D, Pullman B. (Eds): Aromaticity, Pseudo-Aromaticity, Antiaromaticity. Jerusalem Symposium of Quantum Chemistry and Biochemistry 1971, Vol. 3. Israel Academy of Sciences and Humanities, Jerusalem 1971.
2. Balaban A. T.: Pure Appl. Chem. 1980, 52, 1409. <https://doi.org/10.1351/pac198052061409>
3. Garrat P. J: Aromaticity. Wiley, New York 1986.
4. Schleyer P. v. R.: Pure Appl. Chem. 1996, 68, 209. <https://doi.org/10.1351/pac199668020209>
5. Minkin V. I., Glukhovtsev M. N., Simkin B. Y.: Aromaticity and Antiaromaticity – Electronic and Structural Aspects. Wiley, New York 1994.
6. Balaban A. T., Oniciu D. C., Katritzky A. R.: Chem. Rev. 2004, 104, 2777. <https://doi.org/10.1021/cr0306790>
7. Schleyer P. v. R.: Chem. Rev. 2001, 101, 1115. <https://doi.org/10.1021/cr0103221>
8. Schleyer P. v. R.: Chem. Rev. 2005, 105, 3433. <https://doi.org/10.1021/cr030095y>
9. Krygowski T. M., Cyranski M. K.: Chem. Rev. 2001, 101, 1385. <https://doi.org/10.1021/cr990326u>
10. Cyranski M. K., Krygowski T. M., Katritzky A. R., Schleyer P. v. R.: J. Org. Chem. 2007, 67, 1333. <https://doi.org/10.1021/jo016255s>
11. Katritzky A. R., Barczynski P., Musumarra G., Pisano D., Szafran M.: J. Am. Chem. Soc. 2001, 111, 7. <https://doi.org/10.1021/ja00183a002>
12. Katritzky A. R., Karelson M., Sild S., Krygowski T. M., Jug K.: J. Org. Chem. 1989, 63, 5228. <https://doi.org/10.1021/jo970939b>
13. Jug K., Koster A.: J. Phys. Org. Chem. 1991, 4, 163. <https://doi.org/10.1002/poc.610040307>
14. Bultinck P., Fias S., Ponec R.: Chem. Eur. J. 2006, 12, 8813. <https://doi.org/10.1002/chem.200600541>
15. Fias S., van Damme S., Bultinck P.: J. Comput. Chem. 2008, 29, 358. <https://doi.org/10.1002/jcc.20794>
16. Aihara J.: J. Am. Chem. Soc. 2006, 128, 2873. <https://doi.org/10.1021/ja056430c>
17. Fias S., Fowler P. W., Delgado J. L., Hahn U., Bultinck P.: Chem. Eur. J. 2008, 10, 3093. <https://doi.org/10.1002/chem.200701534>
18. Bultinck P.: Faraday Discuss. 2007, 135, 347. <https://doi.org/10.1039/b609640a>
19. Polansky O. E., Derflinger G.: Int. J. Quantum Chem. 1967, 1, 379. <https://doi.org/10.1002/qua.560010412>
20. Bultinck P., Ponec R., Gallegos A. , Fias S., van Damme S., Carbó-Dorca R.: Croat. Chem. Acta 2006, 79, 363.
21. Anusooya Y., Chakrabarti A., Pati S. K., Ramasesha S.: Int. J. Quantum Chem. 1998, 70, 503. <https://doi.org/10.1002/(SICI)1097-461X(1998)70:3<503::AID-QUA6>3.0.CO;2-Y>
22. Ponec R., Uhlík F.: Croat. Chem. Acta 1996, 69, 941.
23. Ponec R., Mayer I.: J. Phys. Chem. A 1997, 101, 1738. <https://doi.org/10.1021/jp962510e>
24. Bultinck P., Ponec R., van Damme S.: J. Phys. Org. Chem. 2005, 18, 706. <https://doi.org/10.1002/poc.922>
25. Gutman I.: Monatsh. Chem. 2005, 136, 1055. <https://doi.org/10.1007/s00706-005-0295-x>
26. Gutman I., Bosanac S.: Tetrahedron 1977, 33, 1809. <https://doi.org/10.1016/0040-4020(77)84063-5>
27. Bosanac S., Gutman I.: Z. Naturforsch., A 1977, 32, 10. <https://doi.org/10.1515/zna-1977-0104>
28. Giambiagi M. S., Giambiagi M., Jorge F. E.: Z. Naturforsch., A 1984, 39, 1259. <https://doi.org/10.1515/zna-1984-1220>
29. Sannigrahi A. B., Kar T.: Chem. Phys. Lett. 1990, 173, 569. <https://doi.org/10.1016/0009-2614(90)87254-O>
30. Sannigrahi A. B., Kar T.: J. Mol. Struct. (THEOCHEM) 2000, 496, 1. <https://doi.org/10.1016/S0166-1280(99)00339-5>
31. Ponec R., Cooper D. L.: Int. J. Quantum Chem. 2004, 97, 1002. <https://doi.org/10.1002/qua.20007>
32. Ponec R., Yuzhakov G., Tantillo D. J.: J. Org. Chem. 2004, 69, 2992. <https://doi.org/10.1021/jo035506p>
33. Ponec R., Bultinck P., Gutta P., Tantillo D. J.: J. Phys. Chem. A 2006, 110, 3785. <https://doi.org/10.1021/jp0568430>
34. Bollini C. G., Giambiagi M., Giambiagi M. S., Figueiredo A. P.: J. Math. Chem. 2000, 8, 71. <https://doi.org/10.1023/A:1018844410832>
35. Giambiagi M., Giambiagi M. S., dos Santos C. D., de Figueiredo A. P.: Phys. Chem. Chem. Phys. 2002, 2, 3381. <https://doi.org/10.1039/b002009p>
36. Ponec R., Roithová J., Sannigrahi A. B., Lain L., Torre A., Bochicchio R.: J. Mol. Struct. (THEOCHEM) 2000, 505, 283. <https://doi.org/10.1016/S0166-1280(99)00382-6>
37. Graovac A., Gutman I., Trinajstić N.: Topological Approach to the Chemistry of Conjugated Molecules. Springer-Verlag, Berlin 1977.
38. Gutman I.: Top. Curr. Chem. 1992, 162, 29. <https://doi.org/10.1007/BFb0018562>
39. Gutman I.: J. Serb. Chem. Soc. 2005, 70, 441. <https://doi.org/10.2298/JSC0503441G>
40. Graovac A., Gutman I., Trinajstić N., Živković T.: Theor. Chim. Acta 1972, 26, 67. <https://doi.org/10.1007/BF00527654>
41. Coulson C. A.: Proc. Cambridge Philos. Soc. 1940, 36, 201. <https://doi.org/10.1017/S0305004100017175>
42. Gutman I., Trinajstić N.: J. Chem. Phys. 1976, 64, 4921. <https://doi.org/10.1063/1.432132>
43. Gutman I.: Chem. Phys. Lett. 1977, 46, 169. <https://doi.org/10.1016/0009-2614(77)85188-9>
44. Trinajstić N.: Chemical Graph Theory. CRC Press, Boca Raton 1983.
45. Gutman I., Polansky O. E.: Mathematical Concepts in Organic Chemistry. Springer-Verlag, Berlin 1986.
46. Steiner E., Fowler P. W.: J. Phys. Chem. A 2001, 105, 9553. <https://doi.org/10.1021/jp011955m>
47. Steiner E., Fowler P. W., Jenneskens L.: Angew. Chem. Int. Ed. 2001, 40, 362. <https://doi.org/10.1002/1521-3773(20010119)40:2<362::AID-ANIE362>3.0.CO;2-Z>
48. London F.: J. Phys. Radium 1938, 8, 397. <https://doi.org/10.1051/jphysrad:01937008010039700>
49. Bultinck P., Mandado M., Mosquera R.: J. Math. Chem. 2008, 43, 111. <https://doi.org/10.1007/s10910-006-9184-8>
50. Fowler P. W., Steiner E.: Chem. Phys. Lett. 2002, 364, 259. <https://doi.org/10.1016/S0009-2614(02)01244-7>
51. Schleyer P. v. R., Maerker C., Dransfeld A., Jiao H., Hommes N.: J. Am. Chem. Soc. 1996, 118, 6317. <https://doi.org/10.1021/ja960582d>
52. Schleyer P. v. R., Jiao H., Hommes N., Malkin V. G., Malkina O.: J. Am. Chem. Soc. 1997, 119, 12669. <https://doi.org/10.1021/ja9719135>
53. Fallah Bagher-Shaidaei H., Wannere C., Corminboeuf C., Schleyer P. v. R.: Org. Lett. 2006, 8, 863. <https://doi.org/10.1021/ol0529546>
54. Corminboeuf C., Heine T., Seifert G., Schleyer P. v. R.: Phys. Chem. Chem. Phys. 2004, 6, 273. <https://doi.org/10.1039/b313383b>
55. Fias S., van Damme S., Bultinck P.: J. Comput. Chem. 2008, 29, 358. <https://doi.org/10.1002/jcc.20794>
56. Aihara J., Oe S.: Bull. Chem. Soc. Jpn. 2003, 76, 1363. <https://doi.org/10.1246/bcsj.76.1363>
57. Gutman I., Stanković S., Đurđević J., Furtula B.: J. Chem. Inf. Model. 2007, 47, 776. <https://doi.org/10.1021/ci6004977>
58. Pecka J., Ponec R.: J. Math. Chem. 2000, 27, 13. <https://doi.org/10.1023/A:1019166802430>