Collect. Czech. Chem. Commun. 2009, 74, 1727-1738
https://doi.org/10.1135/cccc2009512
Published online 2010-02-04 20:55:59

The reduction of doxorubicin at a mercury electrode and monitoring its interaction with DNA using constant current chronopotentiometry

Jan Vacek, Luděk Havran* and Miroslav Fojta

Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic

References

1. Lown J. W.: Pharmacol. Ther. 1993, 60, 185. <https://doi.org/10.1016/0163-7258(93)90006-Y>
2. Sartiano G. P., Lynch W. E., Bullington D.: J. Antibiot. 1979, 32, 1038. <https://doi.org/10.7164/antibiotics.32.1038>
3. Bachur N. R., Riggs C. E., Green M. R., Langone J. J., Vanvunakis H., Levine L.: Clin. Pharmacol. Ther. 1977, 21, 70. <https://doi.org/10.1002/cpt197721170>
4. Bloom J., Lehman P., Israel M., Rosario O., Korfmacher W. A.: J. Anal. Toxicol. 1992, 16, 223. <https://doi.org/10.1093/jat/16.4.223>
5. Lee C. J., Kang J. S., Kim M. S., Lee K. P., Lee M. S.: Bull. Korean Chem. Soc. 2004, 25, 1211.
6. Liao L. B., Zhou H. Y., Xiao X. A.: J. Mol. Struct. 2005, 749, 108. <https://doi.org/10.1016/j.molstruc.2005.04.007>
7. Hillard E. A., de Abreu F. C., Ferreira D. C. M., Jaouen G., Goulart M. O. F., Amatore C.: Chem. Commun. 2008, 2612. <https://doi.org/10.1039/b718116g>
8. Berg H., Horn G., Luthardt U., Ihn W.: Bioelectrochem. Bioenerg. 1981, 8, 537. <https://doi.org/10.1016/0302-4598(81)80025-6>
9. Rao G. M., Lown J. W., Plambeck J. A.: J. Electrochem. Soc. 1978, 125, 534. <https://doi.org/10.1149/1.2131493>
10. Kano K., Konse T., Nishimura N., Kubota T.: Bull. Chem. Soc. Jpn. 1984, 57, 2383. <https://doi.org/10.1246/bcsj.57.2383>
11. Kano K., Konse T., Kubota T.: Bull. Chem. Soc. Jpn. 1985, 58, 1879. <https://doi.org/10.1246/bcsj.58.1879>
12. Kano K., Konse T., Hasegawa K., Uno B., Kubota T.: J. Electroanal. Chem. 1987, 225, 187. <https://doi.org/10.1016/0022-0728(87)80013-X>
13. Kano K., Konse T., Kubota T.: Bull. Chem. Soc. Jpn. 1985, 58, 424. <https://doi.org/10.1246/bcsj.58.424>
14. Baldwin R. P., Packett D., Woodcock T. M.: Anal. Chem. 1981, 53, 540. <https://doi.org/10.1021/ac00226a037>
15. Chaney E. N., Baldwin R. P.: Anal. Chem. 1982, 54, 2556. <https://doi.org/10.1021/ac00251a034>
16. Komorsky-Lovrić Š.: Bioelectrochemistry 2006, 69, 82. <https://doi.org/10.1016/j.bioelechem.2005.10.006>
17. Húska D., Adam V., Babula P., Hrabeta J., Stiborová M., Eckschlager T., Trnková L., Kizek R.: Electroanalysis 2009, 21, 487. <https://doi.org/10.1002/elan.200804429>
18. Vacek J., Havran L., Fojta M.: Electroanalysis 2009, 21, 2139. <https://doi.org/10.1002/elan.200904646>
19. Konse T., Kano K., Kubota T.: J. Electroanal. Chem. 1988, 246, 385. <https://doi.org/10.1016/0022-0728(88)80174-8>
20. Rauf S., Gooding J. J., Akhtar K., Ghauri M. A., Rahman M., Anwar M. A., Khalid A. M.: J. Pharm. Biomed. Anal. 2005, 37, 205. <https://doi.org/10.1016/j.jpba.2004.10.037>
21. Zhang H. M., Li N. Q.: J. Pharm. Biomed. Anal. 2000, 22, 67. <https://doi.org/10.1016/S0731-7085(99)00254-X>
22. Ibrahim M. S.: Anal. Chim. Acta 2001, 443, 63. <https://doi.org/10.1016/S0003-2670(01)01184-9>
23. Oliveira-Brett A. M., Vivan M., Fernandes I. R., Piedade J. A. P.: Talanta 2002, 56, 959. <https://doi.org/10.1016/S0039-9140(01)00656-7>
24. Wang J., Ozsoz M., Cai X. H., Rivas G., Shiraishi H., Grant D. H., Chicharro M., Fernandes J., Paleček E.: Bioelectrochem. Bioenerg. 1998, 45, 33. <https://doi.org/10.1016/S0302-4598(98)00075-0>
25. Paleček E., Fojta M.: Anal. Chem. 1994, 66, 1566. <https://doi.org/10.1021/ac00081a033>
26. Fojta M., Paleček E.: Anal. Chim. Acta 1997, 342, 1. <https://doi.org/10.1016/S0003-2670(96)00551-X>
27. Paleček E., Postbieglová I.: J. Electroanal. Chem. 1986, 214, 359. <https://doi.org/10.1016/0022-0728(86)80108-5>
28. Oliveira-Brett A. M., Piedade J. A. P., Chiorcea A. M.: J. Electroanal. Chem. 2002, 538, 267. <https://doi.org/10.1016/S0022-0728(02)00944-0>
29. Komorsky-Lovrić S., Lovrić M.: Collect. Czech. Chem. Commun. 2007, 72, 1398. <https://doi.org/10.1135/cccc20071398>
30. Bard A. J., Faulkner L. R.: Electrochemical Methods. Fundamentals and Applications. John Wiley & Sons, New York 1980.
31. Jagner D.: Analyst 1982, 107, 593. <https://doi.org/10.1039/an9820700593>
32. Fojta M., Fojtová M., Havran L., Pivoňková H., Dorčák V., Šestáková I.: Anal. Chim. Acta 2006, 558, 171. <https://doi.org/10.1016/j.aca.2005.10.084>
33. Ponomarev E. A., Krivenko A. G., Sviridova L. N., Stenina E. V.: Russ. J. Electrochem. (Transl. of Elektrokhimiya) 2001, 37, 435. <https://doi.org/10.1023/A:1016698627976>
34. Bouma J., Beijnen J. H., Bult A., Underberg W. J. M.: Pharm. Weekbl. Sci. Ed. 1986, 8, 109. <https://doi.org/10.1007/BF02086146>
35. Tomlinson R., Malspeis L.: J. Pharm. Sci. 1982, 71, 1121. <https://doi.org/10.1002/jps.2600711011>
37. Fojta M. in: Electrochemistry of Nucleic Acids and Proteins. Towards Electrochemical Sensors for Genomics and Proteomics (E. Paleček, F. Scheller and J. Wang, Eds), p. 386. Elsevier, Amsterdam 2005.
38. Fojta M., Havran L., Fulnečková J., Kubičárová T.: Electroanalysis 2000, 12, 926. <https://doi.org/10.1002/1521-4109(200008)12:12<926::AID-ELAN926>3.0.CO;2-F>