Collect. Czech. Chem. Commun.
2009, 74, 1195-1278
https://doi.org/10.1135/cccc2009038
Published online 2009-08-26 11:02:21
Chiral aliphatic hydroxy compounds in nature: A review of biological functions and practical applications
Tomáš Mozga, Zbyněk Prokop, Radka Chaloupková and Jiří Damborský*
Loschmidt Laboratories, Institute of Experimental Biology and National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A4, 625 00 Brno, Czech Republic
References
1. Bader A.: http://www.alfred-bader.cz.
2. Pasteur L.: Two lectures for the Societé Chimique de Paris. Paris, January 20 and February 3, 1860.
3. Bull. Soc. Chim. Fr. 1874, 22, 337.
J. A.:
4. Bull. Soc. Chim. Fr. 1875, 23, 295.
J. H.:
5. Angew. Chem. Int. Ed. 2002, 41, 4439.
< H.: https://doi.org/10.1002/1521-3773(20021202)41:23<4439::AID-ANIE4439>3.0.CO;2-6>
6. Thomson W.: Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light. London 1904.
7. Angew. Chem. Int. Ed. 2007, 46, 4016.
< P.: https://doi.org/10.1002/anie.200603714>
8. Nature 1959, 183, 55.
< P., Lüscher M.: https://doi.org/10.1038/183055a0>
9. Nature 2009, 457, 262.
< T. D.: https://doi.org/10.1038/457262a>
10. Chirality 1998, 10, 373.
< N.: https://doi.org/10.1002/(SICI)1520-636X(1998)10:5<373::AID-CHIR2>3.0.CO;2-7>
11. Tetrahedron Lett. 1966, 7, 1009.
< E., Feibush B., Charles-Sigler R.: https://doi.org/10.1016/S0040-4039(00)70231-0>
12. Pure Appl. Chem. 1997, 69, 1469.
< V. A.: https://doi.org/10.1351/pac199769071469>
13. Angew. Chem., Int. Ed. Engl. 1966, 5, 385.
< R. S., Ingold C., Prelog V.: https://doi.org/10.1002/anie.196603851>
14. Angew. Chem., Int. Ed. Engl. 1982, 21, 567.
< V., Helmchen G.: https://doi.org/10.1002/anie.198205671>
15. Tech. Chem. 1976, 10, 107.
J. B., Beck J. A.:
16. Tetrahedron 1986, 42, 3351.
< J. B.: https://doi.org/10.1016/S0040-4020(01)87306-3>
17. Scheper T. (Ed.): New Enzymes for Organic Synthesis. Screening, Supply and Engineering, 1st ed. Springer, Berlin, Heidelberg 1997.
18. Buchholz K., Kasche V., Bornscheuer U. T.: Biocatalysts and Enzyme Technology. Wiley–VCH, Weinheim 2005.
19. Bornscheuer U. T., Kazlauskas R. J.: Hydrolases in Organic Synthesis: Regio- and Stereoselective Biotransformations, 2nd ed. Wiley–VCH, Weinheim 2005.
20. Aehle W. (Ed.): Enzymes in Industry: Production and Applications, 3rd ed. Wiley–VCH, Weinheim 2007.
21. Enders D., Jaeger K. E. (Eds): Asymmetric Synthesis with Chemical and Biological Methods. Wiley–VCH, Weinheim 2007.
22. Gotor V., Alfonso I., García-Urdiales E. (Eds): Asymmetric Organic Synthesis with Enzymes. Wiley–VCH, Weinheim 2008.
23. Fessner W. D., Anthonsen T. (Eds): Modern Biocatalysis: Stereoselective and Environmentally Friendly Reactions. Wiley–VCH, Weinheim 2008.
24. Caprio V., Williams J.: Catalysis in Asymmetric Synthesis, 2nd ed. Wiley–Blackwell, Chichester 2009.
25. Tao J., Lin G. Q., Liese A.: Biocatalysis for the Pharmaceutical Industry: Discovery, Development, and Manufacturing. Wiley–VCH, Weinheim 2009.
26. FDA Policy Statement for the Development of New Stereoisomeric Drugs. Chirality 1992, 4, 338.
27. Branch S. in: Chiral Separation Techniques. A Practical Approach (G. Subramanian, Ed.), 2nd ed., p. 317. Wiley–VCH, Weinheim 2001.
28. Phytochemistry 1993, 33, 253.
< J. T., Tollsten L., Bergström L. G.: https://doi.org/10.1016/0031-9422(93)85502-I>
29. Tetrahedron: Asymmetry 2003, 14, 1.
< E., Fuganti C., Serra S.: https://doi.org/10.1016/S0957-4166(02)00713-9>
30. Curr. Org. Chem. 2006, 10, 1289.
< R. N.: https://doi.org/10.2174/138527206777698011>
31. Bioorg. Med. Chem. 2007, 15, 7505.
< K.: https://doi.org/10.1016/j.bmc.2007.08.040>
32. http://www.pherobase.com/.
33. Drug Discov. Today 2004, 9, 105.
< H., Groner E., Levy L.: https://doi.org/10.1016/S1359-6446(03)02904-0>
34. Solomons T. W. G. , Fryhle C. B.: Organic Chemistry, 9th ed. John Wiley & Sons, Inc., Hoboken 2006.
35. Wade L. G., Jr.: Organic Chemistry, 6th ed. Prentice-Hall, Inc., Englewood Cliffs (NJ) 2006.
36. J. Chem. Ecol. 2007, 33, 889.
< L. M., Millar J. G., Moreira J. A., Barbour J. D., Lacey E. S., McElfresh J. S., Reuter F. R., Ray A. M.: https://doi.org/10.1007/s10886-007-9275-4>
37. Landolt P. J.: WO/1999/045772, PCT/US1999/004007 (published 16. 9. 1999).
38. Chemosphere 2008, 72, 224.
< S., Robine E., Ramalho O., Oturan M. A.: https://doi.org/10.1016/j.chemosphere.2008.01.057>
39. Appl. Entomol. Zool. 1990, 25, 397.
< K., Amano H.: https://doi.org/10.1303/aez.25.397>
40. J. Agric. Food Chem. 1999, 47, 2447.
< R. J., Wicklow D. T.: https://doi.org/10.1021/jf9901340>
41. Int. J. Food Microbiol. 2007, 113, 133.
< X. M., Larsen T. O., Schnürer J.: https://doi.org/10.1016/j.ijfoodmicro.2006.06.025>
42. J. Chem. Ecol. 2000, 26, 155.
< D., Meillour P. N.-L., Esteban-Duran J. R., Malosse C., Perthuis B., Morin J.-P., Descoins C.: https://doi.org/10.1023/A:1005497613214>
43. J. Agric. Food Chem. 2003, 51, 1421.
< M. J., Margaría C. A., Shaw P. E., Goodner K. L.: https://doi.org/10.1021/jf020765l>
44. J. Chem. Ecol. 2006, 32, 2145.
< R. J., Hossain M. S.: https://doi.org/10.1007/s10886-006-9135-7>
45. Biochem. Syst. Ecol. 1991, 19, 291.
< K., Reissenweber F.: https://doi.org/10.1016/0305-1978(91)90017-T>
46. J. Chem. Ecol. 2008, 34, 450.
< G. B., Bohman B., Unelius C. R., Lorenzo M. G.: https://doi.org/10.1007/s10886-008-9431-5>
47. J. Chem. Ecol. 2006, 32, 2035.
< G., Vitta A. C. R., Ferreira R. A., Zani C. L., Unelius C. R., Lazzari C. R., Diotaiuti L., Lorenzo M. G.: https://doi.org/10.1007/s10886-006-9127-7>
48. J. Chem. Ecol. 1991, 17, 2469.
< H., Phelan P. L.: https://doi.org/10.1007/BF00994595>
49. J. Econ. Entomol. 2000, 93, 1613.
< P. J., Smithhisler C. S., Reed H. C., McDonough L. M.: https://doi.org/10.1603/0022-0493-93.6.1613>
50. Environ. Entomol. 2001, 30, 157.
< S. E., Jeanne R. L.: https://doi.org/10.1603/0046-225X-30.2.157>
51. Nature 2008, 451, 86.
< S., Hanai T., Liao J. C.: https://doi.org/10.1038/nature06450>
52. Appl. Microbiol. Biotechnol. 2008, 81, 89.
< A. F., Liao J. C.: https://doi.org/10.1007/s00253-008-1631-y>
53. J. Appl. Entomol. 2007, 131, 13.
< F., Gallego D., Díez J. J., Pajares J. A.: https://doi.org/10.1111/j.1439-0418.2006.01087.x>
54. J. Econ. Entomol. 2000, 93, 101.
< P. J.: https://doi.org/10.1603/0022-0493-93.1.101>
55. Landolt P. J., Heath R.: WO/2000/016616, PCT/US1999/021037 (published 30. 3. 2000).
56. J. Chem. Ecol. 2004, 30, 1297.
< L., Aliabadi A., McElfresh J. S., Topoff H., Millar J. G.: https://doi.org/10.1023/B:JOEC.0000030300.11787.01>
57. J. Chem. Ecol. 2007, 33, 935.
< L., Tröger A. G., Francke W., McElfresh J. S., Topoff H., Aliabadi A., Millar J. G.: https://doi.org/10.1007/s10886-007-9269-2>
58. Insect Soc. 2008, 55, 137.
< C., Tamarri V., Grasso D. A., Le Moli F., Palla G., Milla J. G., Francke W., Mori A.: https://doi.org/10.1007/s00040-008-0981-x>
59. Ciško-Anić B., Hameršak Z.: Chirality, in press.
60. Insect Soc. 2004, 51, 299.
< A., Dani F. R., Sledge M. F., Fondelli L., Turillazzi S.: https://doi.org/10.1007/s00040-004-0744-2>
61. Chem. Biol. Interact. 2009, 177, 137.
< Y., Liu J., Sugiura T., Ishidao T., Ueno S., Yanagita H., Fueta Y., Kunugita N., Hori H., Yamashita U.: https://doi.org/10.1016/j.cbi.2008.10.053>
62. Water Res. 2004, 38, 3693.
< O., Nalli S., Cooper D., Nicell J.: https://doi.org/10.1016/j.watres.2004.06.012>
63. Environ. Pollut. 2006, 140, 181.
< S., Horn O. J., Grochowalski A. R., Cooper D. G., Nicell J. A.: https://doi.org/10.1016/j.envpol.2005.06.018>
64. Ansmann A., Kawa R., Zander L.: WO/2007/031220, PCT/EP2006/008669 (published 22. 3. 2007).
65. Science 1965, 149, 544.
< J. H., Wilson W. O., McCloskey J.: https://doi.org/10.1126/science.149.3683.544>
66. J. Insect Physiol. 1968, 14, 955.
< F. E., Wilson E. O.: https://doi.org/10.1016/0022-1910(68)90006-1>
67. Insect Biochem. 1975, 5, 489.
< H. A., Blum M. S., Duffield R. M.: https://doi.org/10.1016/0020-1790(75)90032-3>
68. J. Chem. Ecol. 1989, 15, 2589.
< H. A., Blum M. S., Snelling R. R., Evans S. L.: https://doi.org/10.1007/BF01014734>
69. J. Agric. Food Chem. 1994, 42, 886.
< P., Chialva F., Speranza G., Rinaldo C.: https://doi.org/10.1021/jf00040a009>
70. Trends Food Sci. Technol. 1996, 7, 113.
< R., Dossena A., Palla G.: https://doi.org/10.1016/0924-2244(96)10011-X>
71. J. Chromatogr., A 2000, 885, 433.
< D., Ramirez-Lucas P., Malosse C., Aldana R., Kakul T., Morin J. P.: https://doi.org/10.1016/S0021-9673(99)01049-3>
72. J. Chem. Ecol. 2002, 28, 479.
< D., Morin J. P., Kakul T., Beaudoin-Ollivier L., Prior R., Renou M., Malosse I., Stathers T., Embupa S., Laup S.: https://doi.org/10.1023/A:1014531810037>
73. Anesth. Pharmacol. 2006, 103, 81.
A., Oh I., Laster M. J., Popovich J., Eger E. I., Sonner J. M.:
74. Anesth. Pharmacol. 2006, 103, 86.
R., Gong D., Cotten J., Keshavaprasad B., Yost C. S., Eger E. I., Sonner J. M.:
75. Metab. Eng. 2008, 10, 295.
< C. R., Klein-Marcuschamer D., Stephanopoulos G.: https://doi.org/10.1016/j.ymben.2008.06.009>
76. Donaldson G. K., Eliot A. C., Flint D., Maggio-Hall L. A., Nagarajan V.: WO/2007/050671, PCT/US2006/041602 (published 3. 5. 2007).
77. J. Plant. Res. 2009, 122, 183.
< Y., Yamaoka R.: https://doi.org/10.1007/s10265-008-0204-6>
78. J. Econ. Entomol. 1976, 69, 389.
< C. M., Oehler D. D., Snow J. W., Grabbe R. R.: https://doi.org/10.1093/jee/69.3.389>
79. J. Med. Chem. 1996, 39, 2781.
< S. H., Melnick M., Pino M. J., Fuhry M. A., Trippe A. J., Appelt K., Davies J. F., Wu B. W., Musick L.: https://doi.org/10.1021/jm960093o>
80. Food Chem. 2003, 82, 297.
< A., Sánchez A. H., Casado F. J., de Castro A., Rejano L.: https://doi.org/10.1016/S0308-8146(02)00593-9>
81. Int. Dairy J. 2003, 13, 239.
< M., Bertelsen G., Mortensen G., Petersen M. A.: https://doi.org/10.1016/S0958-6946(02)00156-5>
82. Appl. Occup. Environ. Hyg. 2002, 17, 430.
< P., Martin J.: https://doi.org/10.1080/10473220290035462>
83. J. Agric. Food Chem. 2000, 48, 6200.
< F., Duque C., Fujimoto Y.: https://doi.org/10.1021/jf0007232>
84. Toxicon 1990, 28, 445.
< H. J., Jr., McCormick S. P.: https://doi.org/10.1016/0041-0101(90)90083-J>
85. Biochem. Pharmacol. 1993, 46, 2083.
< W. E., Castle M. C.: https://doi.org/10.1016/0006-2952(93)90651-C>
86. Anal. Chim. Acta 2008, 618, 204.
< C., Liu G., Zuo B., Tang Y., Zhang T.: https://doi.org/10.1016/j.aca.2008.05.002>
87. Angew. Chem. Int. Ed. 2001, 40, 2082.
< J. W., Fraefel N., Muri D., Carreira E. M.: https://doi.org/10.1002/1521-3773(20010601)40:11<2082::AID-ANIE2082>3.0.CO;2-1>
88. Int. J. Cosmet. Sci. 2008, 30, 139.
< C., Trucchi B., Gambaro R., Baldassari S.: https://doi.org/10.1111/j.1468-2494.2008.00431.x>
89. Appl. Microbiol. Biotechnol. 2006, 72, 155.
< L., Sánchez S., Ortiz M. A., Villanueva S., Lugo-Cervantes E.: https://doi.org/10.1007/s00253-005-0244-y>
90. J. Agric. Food Chem. 2005, 53, 2231.
< A., Kollmannsberger H., Nitz S.: https://doi.org/10.1021/jf040373+>
91. Biosci. Biotechnol. Biochem. 2004, 68, 1366.
< S., Takano Y., Matsuura H., Yoshihara T.: https://doi.org/10.1271/bbb.68.1366>
92. J. Agric. Food Chem. 1991, 39, 1830.
< H. U., Schreier P.: https://doi.org/10.1021/jf00010a028>
93. J. Agric. Food Chem. 2003, 51, 6280.
< C., Ambid C., Baumes R., Günata Z.: https://doi.org/10.1021/jf034613h>
94. J. Econ. Entomol. 1994, 87, 1470.
< R. A., Cunningham R. T., Liquido N. J., McGovern T. P.: https://doi.org/10.1093/jee/87.6.1470>
95. J. Econ. Entomol. 2001, 94, 39.
< G. T., Peck S. L.: https://doi.org/10.1603/0022-0493-94.1.39>
96. J. Econ. Entomol. 2004, 97, 862.
< G. T., Keum Y. S., Sylva C. D., Li Q. X., Jang E. B.: https://doi.org/10.1603/0022-0493(2004)097[0862:AIICOT]2.0.CO;2>
97. J. Chem. Ecol. 2008, 34, 1532.
< T., Enomoto H., Nishida R.: https://doi.org/10.1007/s10886-008-9562-8>
98. J. Agric. Food Chem. 2007, 55, 10339.
< H., Dregus M., Wahl A., Engel K. H.: https://doi.org/10.1021/jf072464n>
99. Nature 2003, 424, 637.
< M., Terabe H., Hori H., Sasaki M.: https://doi.org/10.1038/424637a>
100. Engel K. H. in: Bioflavour 87 (P. Schrerier, Ed.). Walter de Gruyter, Berlin 1988.
101. J. Agric. Food Chem. 1991, 39, 1131.
< A., Fischer K., Hener U., Kreis P., Rettinger K., Schubert V., Schmarr H. G.: https://doi.org/10.1021/jf00006a028>
102. Food Technol. Biotechnol. 2004, 42, 305.
R. N.:
103. Audia J., Britton T., Droste J., Folmer B., Huffman G., John V., Lee H., Mabry T., Nissen J.: WO/1998/022494, PCT/US1997/020804 (published 28. 5. 1998).
104. J. Microbiol. Methods 2008, 75, 182.
< S., Herbarth O., Mueller A.: https://doi.org/10.1016/j.mimet.2008.05.027>
105. Phytochemistry 1990, 29, 1359.
< A. K.: https://doi.org/10.1016/0031-9422(90)80086-V>
106. Biochem. Syst. Ecol. 1991, 19, 623.
< O., Tang W., Groth I., Bergström G., Thien L. B.: https://doi.org/10.1016/0305-1978(91)90078-E>
107. J. Chem. Ecol. 1991, 17, 1253.
< P. L., Lin H.: https://doi.org/10.1007/BF01402948>
108. J. Entomol. Sci. 2001, 36, 122.
< R. J., Phelan P. L., Wright S. E., Minalga A. J., Barger R., Leskey T. C.: https://doi.org/10.18474/0749-8004-36.2.122>
109. J. Agric. Food Chem. 2004, 52, 898.
< L. M., Ram M. S.: https://doi.org/10.1021/jf035190m>
110. J. Insect Physiol. 1970, 16, 2081.
< B. E., Waterhouse D. F.: https://doi.org/10.1016/0022-1910(70)90081-8>
111. J. Agric. Food Chem. 2005, 53, 7931.
< W., Qian M. C.: https://doi.org/10.1021/jf051011k>
112. Biochem. Syst. Ecol. 2002, 30, 217.
< W. F., Palmer T. M., Stanton M. L.: https://doi.org/10.1016/S0305-1978(01)00099-0>
113. J. Entomol. Sci. 1997, 32, 245.
< A. B., Lee C. J., Levi V. A., Moreno D. S.: https://doi.org/10.18474/0749-8004-32.3.245>
114. Curr. Microbiol. 2000, 41, 206.
< L. J., Simmons R. B., Crow S. A., Ahearn D. G.: https://doi.org/10.1007/s002840010120>
115. J. Agric. Food Chem. 2002, 50, 5386.
< M. J., Margaría C. A., Shaw P. E., Goodner K. L.: https://doi.org/10.1021/jf020297f>
116. Ann. Entomol. Soc. Am. 1970, 63, 661.
< G. B., Vite J. P.: https://doi.org/10.1093/aesa/63.3.661>
117. Environ. Entomol. 1979, 8, 789.
< L. C., Libbey L. M., Rudinsky J. A.: https://doi.org/10.1093/ee/8.5.789>
118. J. Org. Chem. 1999, 64, 1459.
< J., Hoard D. W., Khau V. V., Martinelli M. J., Moher E. D., Moore R. E., Tius M. A.: https://doi.org/10.1021/jo9815958>
119. Griesbeck A. G., El-Idreesy T. T., Fiege M., Brun R.: Org. Lett. 2002, 4, 4193.
120. Biochem. Syst. Ecol. 2005, 33, 651.
< W. F.: https://doi.org/10.1016/j.bse.2004.12.009>
121. J. Agric. Food Chem. 1989, 37, 418.
< R. G., Flath R. A., Mon T. R.: https://doi.org/10.1021/jf00086a032>
122. J. Agric. Food Chem. 2001, 49, 1394.
< M., Shibamoto T.: https://doi.org/10.1021/jf001321x>
123. J. Agric. Food Chem. 2005, 53, 8054.
< C. M., Allen M. S., Bedgood D. R., Bishop A. G., Prenzler P. D.: https://doi.org/10.1021/jf051233i>
124. J. Agric. Food Chem. 2001, 49, 2376.
< L. V., Huss H. H., Dalgaard P.: https://doi.org/10.1021/jf0009908>
125. J. Agric. Food Chem. 2005, 53, 2616.
< C., Taylor K. D., Shahidi F.: https://doi.org/10.1021/jf0483826>
126. J. Agric. Food Chem. 2006, 54, 8480.
R. L., Fletcher G., Xu L., Dufour J. P.:
127. Plant. Physiol. 1997, 114, 705.
< K. A., Thompson J. E.: https://doi.org/10.1104/pp.114.2.705>
128. Phytochemistry 2001, 56, 703.
< F., Legge R. L., Thompson J. E.: https://doi.org/10.1016/S0031-9422(00)00483-0>
129. J. Agric. Food Chem. 1990, 38, 455.
< J. H., Hamilton-Kemp T. R., Andersen R. A., Hildebrand D. F.: https://doi.org/10.1021/jf00092a027>
130. J. Comp. Physiol., A 2002, 188, 787.
M., Okada R., Mizunami M.:
131. Chem. Senses 1999, 24, 429.
< M., Galizia C. G., Giurfa M., Menzel R.: https://doi.org/10.1093/chemse/24.4.429>
132. Physiol. Entomol. 1978, 3, 107.
< E. D., Inwood M. R., Cammaerts M. C.: https://doi.org/10.1111/j.1365-3032.1978.tb00140.x>
133. J. Insect Physiol. 1978, 24, 207.
< M. C., Inwood M. R., Morgan E. D., Parry K., Tyler R. C.: https://doi.org/10.1016/0022-1910(78)90036-7>
134. J. Insect Physiol. 1981, 27, 225.
< M. C., Evershed R. P., Morgan E. D.: https://doi.org/10.1016/0022-1910(81)90055-X>
135. J. Insect Physiol. 1983, 29, 659.
< M. C., Evershed R. P., Morgan E. D.: https://doi.org/10.1016/0022-1910(83)90019-7>
136. J. Insect Physiol. 1973, 19, 1299.
< M. C.: https://doi.org/10.1016/0022-1910(73)90213-8>
137. J. Insect Physiol. 1970, 16, 141.
< R. M., Blum M. S.: https://doi.org/10.1016/0022-1910(70)90121-6>
138. Ann. Entomol. Soc. Am. 1969, 62, 1212.
< R. M., Brand J. M., Fletcher D. J. C.: https://doi.org/10.1093/aesa/62.5.1212>
139. Insect Biochem. 1972, 2, 150.
< U. P., Leuthdold R. H.: https://doi.org/10.1016/0020-1790(72)90047-9>
140. Insect Soc. 1973, 20, 205.
< R. H., Schlunegger U.: https://doi.org/10.1007/BF02223190>
141. Biochem. Syst. Ecol. 1986, 14, 341.
< J.M., Pretorius V.: https://doi.org/10.1016/0305-1978(86)90110-9>
142. Biochem. Syst. Ecol. 2006, 34, 536.
< W. F., Palmer T. M., Stanton M. L.: https://doi.org/10.1016/j.bse.2006.01.002>
143. Insect Biochem. 1981, 11, 675.
< J. M., Verhaeghe J. C., Ottinger R., Braekman J. C., Daloze D.: https://doi.org/10.1016/0020-1790(81)90057-3>
144. J. Chem. Ecol. 1975, 1, 115.
< G. T., Gore W. E., Silverstein R. M., Peacock J. W., Cuthbert R. A., Lanier G. N., Simeone J. B.: https://doi.org/10.1007/BF00987724>
145. IOBC-WPRS Bull. 2002, 25, 259.
S., Tolasch T., Francke W., Gries R., Gries G., Dunkelblum E., Mendel Z.:
146. J. Chem. Ecol. 2004, 30, 631.
< A., Ben-Yehuda S., Dunkelblum E., Harel M., Assael F., Mendel Z.: https://doi.org/10.1023/B:JOEC.0000018634.94866.5b>
147. J Chem. Ecol. 1980, 6, 467.
< J. M., Verhaeghe J. C., Braekman J. C., Daloze D., Tursch B.: https://doi.org/10.1007/BF01402923>
148. Insect Biochem. 1987, 17, 237.
< M. F., Cammaert T. R., Evershe R. P., Morgan E. D.: https://doi.org/10.1016/0020-1790(87)90165-X>
149. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 419.
< T. H., Meinwald J., Hicks K., Eisner T.: https://doi.org/10.1073/pnas.74.2.419>
150. J. Chem. Ecol. 1990, 16, 2691.
< A., Dettner K.: https://doi.org/10.1007/BF00988079>
151. J. Agric. Food Chem. 2000, 48, 6025.
< G. V., Guerrero A.: https://doi.org/10.1021/jf0008689>
152. J. Chem. Ecol. 1995, 21, 29.
< J., Kozlov M. V., Philipp P., Francke W., Löfstedt C.: https://doi.org/10.1007/BF02033660>
153. J. Exp. Biol. 2002, 205, 989.
M. C., Hallberg E., Kozlov M. V., Francke W., Hansson B. S., Löfstedt C.:
154. J. Insect Physiol. 1998, 44, 189.
< M. C., Hansson B. S.: https://doi.org/10.1016/S0022-1910(97)00043-7>
155. J. Chem. Ecol. 2008, 34, 220.
< C., Bergmann J., Francke W., Jirle E., Hansson B. S., Ivanov V. D.: https://doi.org/10.1007/s10886-007-9418-7>
156. J. Agric. Food Chem. 2006, 54, 9193.
< S., Dauphin B., Pons M., Blancard D., Darriet P.: https://doi.org/10.1021/jf0615294>
157. J. Chem. Ecol. 2006, 32, 59.
< A., Marsaioli A. J., Singer R. B., Amaral M. C., Menezes C., Kerr W. E., Batista-Pereira L. G., Corrêa A. G.: https://doi.org/10.1007/s10886-006-9351-1>
158. Chem. Biodivers. 2008, 5, 1327.
< R. A., Haber W. A., Lawton R. O., Setzer W. N.: https://doi.org/10.1002/cbdv.200890120>
159. J. Chem. Ecol. 1983, 9, 57.
< A. M., Blum M. S.: https://doi.org/10.1007/BF00987770>
160. J. Insect Physiol. 2002, 48, 453.
< L., Patricio E. F., Maile R., Morgan E. D.: https://doi.org/10.1016/S0022-1910(02)00066-5>
161. J. Braz. Chem. Soc. 2000, 11, 562.
< W., Lübke G., Schröder W., Reckziegel A., Imperatriz-Fonseca V., Kleinert A., Engels E., Hartfelder K., Radtke R., Engels W.: https://doi.org/10.1590/S0103-50532000000600003>
162. Braz. J. Biol. 2004, 64, 827.
< E. F., Cruz-López L., Morgan E. D.: https://doi.org/10.1590/S1519-69842004000500012>
163. J. Chem. Ecol. 1983, 9, 1465.
< B. H., Roubik D. W.: https://doi.org/10.1007/BF00988512>
164. Apidologie 2007, 38, 38.
< J., Rojas J. C., Guzmán-Díaz M., Rincón-Rabanales M., Cruz-López L.: https://doi.org/10.1051/apido:2006052>
165. J. Insect Physiol. 1973, 19, 1111.
< J. M., Regnier F. E., Clarke E. T., Weaver E. C., Weaver N.: https://doi.org/10.1016/0022-1910(73)90036-X>
166. Rev. Bras. Biol. 1981, 41, 619.
W. E., Blum M., Fales H. M.:
167. J. Chem. Ecol. 1985, 11, 409.
< L. K., Haynes L. W., Carlson M. A., Fortnum H. A., Gorgas D. L.: https://doi.org/10.1007/BF00989552>
168. Biochem. Syst. Ecol. 1982, 10, 91.
< M. S., Jones T. H., Snelling R. R., Overal W. L., Fales H. M., Highet R. J.: https://doi.org/10.1016/0305-1978(82)90057-6>
169. J. Insect Physiol. 1974, 20, 1629.
< R. G., Silverstein R. M., Moser J. C.: https://doi.org/10.1016/0022-1910(74)90092-4>
170. J. Chem. Ecol. 2006, 32, 643.
< M. R., Mendonca A. L., Do Nascimento R., R., Sant’ana A. E. G.: https://doi.org/10.1007/s10886-005-9020-9>
171. J. Chem. Ecol. 1994, 20, 153.
< C., Hansson B. S., Petersson E., Valeur P., Richards A.: https://doi.org/10.1007/BF02065998>
172. J. Dairy Res. 2000, 67, 273.
< L., Piombino P., Addeo F.: https://doi.org/10.1017/S0022029900004106>
173. J. Chem. Ecol. 1974, 20, 1895.
K. J., Swigar A. A., Silverstein R. M., Borden J. H., Stokkink E.:
174. Science 1976, 192, 894.
< J. H., Chong L., McLean J. A., Slessor K. N., Mori K.: https://doi.org/10.1126/science.1273573>
175. J. Chem. Ecol. 1980, 6, 445.
< J. H., Handley J. R., McLean J. A., Silverstein R. M., Chong L., Slessor K. N., Johnston B. D., Schuler H. R.: https://doi.org/10.1007/BF01402921>
176. J. Appl. Entomol. 2003, 127, 189.
< C. A. H., Berisford C. W.: https://doi.org/10.1046/j.1439-0418.2003.00743.x>
177. J. Econ. Entomol. 2005, 98, 1506.
< P. G., Villaverde R., Alfaro R., Zerba E.: https://doi.org/10.1603/0022-0493-98.5.1506>
178. J. Chem. Ecol. 1997, 23, 2599.
< A., Pettersson J., Pickett J. A., Wadhams L. J., Niemeyer H. M.: https://doi.org/10.1023/B:JOEC.0000006669.34845.0d>
179. Eur. J. Entomol. 1998, 95, 501.
L., Gianoli E., Quiroz A., Niemeyer H. M.:
180. Agric. Forest Entomol. 2003, 5, 27.
< V., Ahmed E., Glinwood R., Pettersson J.: https://doi.org/10.1046/j.1461-9563.2003.00159.x>
181. Insect Biochem. 1984, 14, 505.
< G. W. K., Robertson P. L., Brophy J. J., Duke R. K., McDonald J., Plant W. D.: https://doi.org/10.1016/0020-1790(84)90004-0>
182. J. Chem. Ecol. 1982, 8, 635.
< A., Lloyd H. A.: https://doi.org/10.1007/BF00989632>
183. J. Chem. Ecol. 2001, 27, 1219.
< G. N., Fales H. M., Lloyd H. A., Jones T., Sokoloski E. A., Marshall-Batty K., Blum M. S.: https://doi.org/10.1023/A:1010372114144>
184. Anim. Behav. 1970, 18, 310.
< M.: https://doi.org/10.1016/S0003-3472(70)80043-4>
185. Experientia 1970, 26, 1193.
< R. T., Birch M. C.: https://doi.org/10.1007/BF01897958>
186. Talanta 2003, 59, 107.
< P., Kalinová B., Valterová I., Koutek B.: https://doi.org/10.1016/S0039-9140(02)00456-3>
187. Comp. Biochem. Physiol., B 1997, 104, 505.
< R. R., Billen J., Morgan E. D.: https://doi.org/10.1016/0305-0491(93)90274-9>
188. Naturwissenschaften 1988, 75, 275.
< A. B., Vostrowsky O., Bestmann H. J., Steghaus-Kovac S., Maschwitz U.: https://doi.org/10.1007/BF00367327>
189. Naturwissenschaften 1993, 80, 424.
< F., Bestmann H. J.: https://doi.org/10.1007/BF01168340>
190. Biochem. Syst. Ecol. 2008, 36, 260.
< E. D., Jungnickel H., Billen J., Ito F., Bergmann J., Gobin B.: https://doi.org/10.1016/j.bse.2007.02.007>
191. J. Chem. Ecol. 1977, 3, 1.
< G. N., Gore W. E., Pearce G. T., Peacock J. W., Silverstein R. M.: https://doi.org/10.1007/BF00988129>
192. J. Chem. Ecol. 1978, 4, 363.
< R. A., Peacock J. W.: https://doi.org/10.1007/BF00989343>
193. J. Chem. Ecol. 1984, 10, 373.
< B. H.: https://doi.org/10.1007/BF00987864>
194. Ann. Entomol. Soc. Am. 1984, 77, 272.
< H. R., Blum M. S., Wheeler J. W., Overal W. L., Schmidt J. O., Chao J. T.: https://doi.org/10.1093/aesa/77.3.272>
195. Anim. Behav. 1996, 51, 61.
< D. H., Jr., Jacobs L. F., Schmidt J. O.: https://doi.org/10.1006/anbe.1996.0005>
196. Physiol. Entomol. 2007, 32, 283.
< J. M. S., Della Lucia T. M. C., do Nascimento R. R., Bergmann J., Morgan E. D.: https://doi.org/10.1111/j.1365-3032.2007.00570.x>
197. J. Insect Physiol. 1972, 18, 31.
< R. M., Blum M. S.: https://doi.org/10.1016/0022-1910(72)90062-5>
198. J. Chem. Ecol. 2000, 26, 2497.
< R., Jungnickel H., Morgan E. D., Ito F., Billen J.: https://doi.org/10.1023/A:1005528511208>
199. Ann. Entomol. Soc. Am. 2000, 93, 869.
< F., Ohkawara K.: https://doi.org/10.1603/0013-8746(2000)093[0869:PABOEQ]2.0.CO;2>
200. J. Chem. Ecol. 1999, 25, 1395.
< E. D., do Nascimento R. R., Keegans S. J., Billen J.: https://doi.org/10.1023/A:1020987028163>
201. J. Insect Physiol. 1966, 12, 1435.
< D. J., Frost J., Eisenbraun E. J., Vick K., Drew W. A., Young J.: https://doi.org/10.1016/0022-1910(66)90157-0>
202. Comp. Biochem. Phys., B 1985, 81, 555.
< O., Wheeler J. W., Cokendolpher J. C., Duffield R. M.: https://doi.org/10.1016/0305-0491(85)90365-7>
203. J. Chem. Ecol. 1996, 22, 103.
< L. B., Jewett D. K., Brigham D. L.: https://doi.org/10.1007/BF02040203>
204. Bioorg. Med. Chem. 1996, 4, 323.
< P., Malosse C., Ducrot P. H., Lettere M., Zagatti P.: https://doi.org/10.1016/0968-0896(96)00009-0>
205. J. Chem. Ecol. 1996, 22, 1389.
< R. M., Peña J. E., Oehlschlager A. C., Perez A. L.: https://doi.org/10.1007/BF02027720>
206. J. Chem. Ecol. 1997, 23, 869.
< A. L., Campos Y., Chinchilla C. M., Oehlschlager A. C., Gries G., Gries R., Giblin-Davis R. M., Castrillo G., Peña J. E., Duncan R. E., Gonzalez L. M., Pierce H. D., McDonald R., Andrade R.: https://doi.org/10.1023/B:JOEC.0000006377.13235.4b>
207. J. Chem. Ecol. 2002, 28, 1653.
< A. C., Gonzalez L., Gomez M., Rodriguez C., Andrade R.: https://doi.org/10.1023/A:1019936831696>
208. J. Chem. Ecol. 2000, 26, 2763.
< R. M., Gries R., Crespi B., Robertson L. N., Hara A. H., Gries G., O’Brien C. W., Pierce H. D.: https://doi.org/10.1023/A:1026437809875>
209. J. Econ. Entomol. 2003, 96, 1126.
< C., González-Hernández H., Leyva J., Llanderal-Cazares C., Cruz-López L., Rojas J. C.: https://doi.org/10.1603/0022-0493-96.4.1126>
210. Entomol. Exp. Appl. 2008, 127, 207.
< C., Garcia-Coapio G., Rojas J. C., Malo E. A., Cruz-Lopez L., del Real I., Gonzalez-Hernandez H.: https://doi.org/10.1111/j.1570-7458.2008.00703.x>
211. Naturwissenschaften 1992, 79, 134.
< A. C., Pierce H. D., Morgan B., Wimalaratne P. D. C., Slessor K. N., King G. G. S., Gries G., Gries R., Borden J. H., Jiron L. F., Chinchilla C. M., Mexzan R. G.: https://doi.org/10.1007/BF01131543>
212. J. Chem. Ecol. 1991, 17, 2127.
< D., Malosse C., Lettere M., Ducrot P. H., Zagatti P., Renou M., Descoins C.: https://doi.org/10.1007/BF00987996>
213. J. Chem. Ecol. 1993, 19, 1703.
< K., Sánchez P., Cerda H., Hernández J. V., Jaffé R., Urdaneta N., Guerra G., Martínez R., Miras B.: https://doi.org/10.1007/BF00982302>
214. J. Chem. Ecol. 2005, 31, 1789.
< I., Renou M., Morin J. P., Ferreira J. M., Rochat D.: https://doi.org/10.1007/s10886-005-5927-4>
215. Anal. Sci. 2007, 23, 1071.
< J.: https://doi.org/10.2116/analsci.23.1071>
216. Clin. Chim. Acta 1995, 238, 115.
< H., Yamaguchi S., Saiki K., Shimizu N., Fukao T., Kondo N., Orii T.: https://doi.org/10.1016/0009-8981(95)06074-N>
217. Physiol. Entomol. 1985, 10, 33.
< M. C., Attygalle A. B., Evershed R. P., Morgan E. D.: https://doi.org/10.1111/j.1365-3032.1985.tb00016.x>
218. J. Chem. Ecol. 1985, 11, 177.
< J. M.: https://doi.org/10.1007/BF00988200>
219. Agric. Food Chem. 2006, 54, 4820.
< I. H., Choi H. K., Kim Y. S.: https://doi.org/10.1021/jf0601416>
220. J. Agric. Food Chem. 2008, 56, 1704.
< P. G., Ribeiro B., Gonçalves R. F., Baptista P., Valentão P., Seabra R. M., Andrade P. B.: https://doi.org/10.1021/jf073181y>
221. Appl. Microbiol. 1972, 24, 721.
E., Libbey L. M., Stawicki S., Wasowicz E.:
222. Appl. Microbiol. 1974, 27, 1001.
E., Stawicki S., Wasowicz E.:
223. FEMS Microbiol. Lett. 2008, 284, 231.
< M., Jakubíková L., Víden I., Farkaš V.: https://doi.org/10.1111/j.1574-6968.2008.01202.x>
224. J. Chem. Ecol. 1991, 17, 581.
< A. M., Pierce H. D., Borden J. H., Oehlschlager A. C.: https://doi.org/10.1007/BF00982128>
225. J. Chem. Ecol. 1999, 25, 567.
< J., Jonsell M., Nordlander G., Borg-Karlson A. K.: https://doi.org/10.1023/A:1020958005023>
226. J. Chem. Ecol. 1992, 18, 333.
< D. M., Kamm J. A., Buttery R. G.: https://doi.org/10.1007/BF00994235>
227. J. Chem. Ecol. 2001, 27, 995.
< Q. H., Liu G. T., Schlyter F., Birgersson G., Anderson P., Valeur P.: https://doi.org/10.1023/A:1010395221953>
228. J. Chem. Ecol. 2005, 31, 745.
< M., Blazenec M., Schlyter F.: https://doi.org/10.1007/s10886-005-3542-z>
229. J. Chem. Ecol. 2008, 34, 168.
< K., Napper E. K., Birkett M. A., Woodcock C. M., Pickett J. A., Wadhams L. J., Thomas J. A.: https://doi.org/10.1007/s10886-007-9417-8>
230. Insect Biochem. 1980, 10, 107.
< C., Baker R., Howse P. E.: https://doi.org/10.1016/0020-1790(80)90046-3>
231. Med. Vet. Entomol. 2004, 18, 313.
< M. A., Agelopoulos N., Jensen K. M. V., Jespersen J. B., Pickett J. A., Prijs H. J., Thomas G., Trapman J. J., Wadhams L. J., Woodcock C. M.: https://doi.org/10.1111/j.0269-283X.2004.00528.x>
232. Howse P. E.: WO/1990/011012, PCT/GB1990/000415 (published 4. 10. 1990).
233. Chem. Senses 2008, 33, 379.
< P., Angeli S., Weissbecker B., Schütz S.: https://doi.org/10.1093/chemse/bjn005>
234. Phytochemistry 2006, 67, 202.
< F., Hanssen H. P., König W. A.: https://doi.org/10.1016/j.phytochem.2005.10.025>
235. J. Chem. Ecol. 1991, 17, 567.
< A. M., Pierce H. D., Oehlschlager A. C., Borden J. H.: https://doi.org/10.1007/BF00982127>
236. J. Agric. Food Chem. 1986, 34, 119.
< A., Heusinger G., Gessner M.: https://doi.org/10.1021/jf00067a033>
237. Mycorrhiza 2008, 18, 111.
< T., Shimano S., Suzuki M.: https://doi.org/10.1007/s00572-007-0158-x>
238. J. Chem. Ecol. 1991, 17, 2113.
< G., Hedlund K., Rundgren S.: https://doi.org/10.1007/BF00987995>
239. J. Agric. Food Chem. 2005, 53, 5385.
< M. C., Díaz-Maroto Hidalgo I. J., Sánchez-Palomo E., Pérez-Coello M. S.: https://doi.org/10.1021/jf050340+>
240. J. Chem. Ecol. 2003, 29, 2347.
< S., Linn C., Roelofs W.: https://doi.org/10.1023/A:1026282632715>
241. J. Chem. Ecol. 2006, 32, 1399.
< S. P, Städler E.: https://doi.org/10.1007/s10886-006-9058-3>
242. Entomol. Exp. Appl. 1983, 33, 129.
< J. A., Buttery R. G.: https://doi.org/10.1111/j.1570-7458.1983.tb03248.x>
243. J. Insect Physiol. 2004, 50, 43.
< Z., Guerin P. M.: https://doi.org/10.1016/j.jinsphys.2003.09.007>
244. Acta Bot. Gallica 1998, 145, 265.
< F., Rapior S., Gargadennec A., Andary C., Bessiére J. M.: https://doi.org/10.1080/12538078.1998.10516306>
245. J. Insect Physiol. 2009, 55, 384.
< P. G., Guerin P. M.: https://doi.org/10.1016/j.jinsphys.2009.01.006>
246. Front. Zool. 2007, 4, 3.
< S., Erdmann D., Steidle J. L., Ruther J.: https://doi.org/10.1186/1742-9994-4-3>
247. J. Med. Entomol. 1989, 26, 459.
< F. E., Kline D. L.: https://doi.org/10.1093/jmedent/26.5.459>
248. J. Am. Mosq. Control Assoc. 1989, 5, 311.
W., Kline D. L.:
249. J. Med. Entomol. 1991, 28, 133.
< Y., Kitron U., Killickkendrick R.: https://doi.org/10.1093/jmedent/28.1.133>
250. J. Med. Entomol. 1991, 28, 284.
< T. G. T., Doccantos R. C. B, Hall D. R.: https://doi.org/10.1093/jmedent/28.2.284>
251. J. Am. Mosq. Control Assoc. 1993, 9, 182.
C. E., Kline D. L., Williams D. C., Tidwell M. A.:
252. Med. Vet. Entomol. 1994, 8, 63.
< P. H. A., Kemme J. A., Ritchie S. A., Kay B. H.: https://doi.org/10.1111/j.1365-2915.1994.tb00387.x>
253. J. Med. Entomol. 1995, 32, 197.
< F. E., Hagan D. V.: https://doi.org/10.1093/jmedent/32.2.197>
254. Physiol. Entomol. 1996, 21, 15.
< A., Dyer C., Mordue A. J., Wadhams L. J., Mordue W.: https://doi.org/10.1111/j.1365-3032.1996.tb00830.x>
255. J. Insect Behav. 1997, 10, 395.
< W., Dekker T., Wijnholds Y. G.: https://doi.org/10.1007/BF02765606>
256. Med. Vet. Entomol. 1997, 11, 177.
< A. F., Beebe N. W., Ritchie S. A.: https://doi.org/10.1111/j.1365-2915.1997.tb00310.x>
257. J. Am. Mosq. Control Assoc. 1998, 14, 289.
D. L., Mann M. O.:
258. J. Insect Physiol. 1999, 45, 365.
< J., van Loon J. J. A.: https://doi.org/10.1016/S0022-1910(98)00135-8>
259. J. Insect Physiol. 1999, 45, 85.
< K. C., Cork A.: https://doi.org/10.1016/S0022-1910(98)00102-4>
260. J. Med. Entomol. 2000, 37, 984.
< P. K., Sommer C.: https://doi.org/10.1603/0022-2585-37.6.984>
261. Med. Vet. Entomol. 2001, 15, 147.
< A., Mordue (Iuntz) A. J., Mordue W.: https://doi.org/10.1046/j.1365-2915.2001.00285.x>
262. Med. Vet. Entomol. 2001, 15, 259.
< C., Birkett M. A., Gibson G., Ziesmann J., Sagnon N’F., Mohammed H. A., Coluzzi M., Pickett J. A.: https://doi.org/10.1046/j.0269-283x.2001.00297.x>
263. Neotrop. Entomol. 2002, 31, 13.
< A. L., Eiras A. E., Cavalcante R. R.: https://doi.org/10.1590/S1519-566X2002000100002>
264. J. Am. Mosq. Control Assoc. 2003, 19, 166.
L. M., Gardner R. C.:
265. Med. Vet. Entomol. 2004, 18, 336.
< V., Kline D. L., Blackwel A.: https://doi.org/10.1111/j.0269-283X.2004.00516.x>
266. J. Vector Ecol. 2004, 29, 309.
R. C.:
267. J. Vector Ecol. 2005, 30, 133.
S., Hribar L. J., Kopi M.:
268. Med. Vet. Entomol. 2007, 21, 70.
< S., Carlson D. A., Ndegwa P. N.: https://doi.org/10.1111/j.1365-2915.2007.00665.x>
269. J. Med. Entomol. 2008, 45, 638.
< J. E., Olson M. A.: https://doi.org/10.1603/0022-2585(2008)45[638:EOCDAP]2.0.CO;2>
270. Med. Vet. Entomol. 2008, 22, 26.
< K., Jones R. E., Skerratt L. F., Fitzpatrick L. A., Reid S. A., Bellis G. A.: https://doi.org/10.1111/j.1365-2915.2007.00707.x>
271. J. Chem. Ecol. 2001, 27, 471.
< C., Guerin P. M., Syed Z.: https://doi.org/10.1023/A:1010328720035>
272. Nchu F., Maniania N. K., Touré A., Hassanali A., Eloff J. N.: Vet. Parasitol., in press.
273. J. Chem. Ecol. 2002, 28, 2601.
< H., Kuwahara Y., Tanabe T.: https://doi.org/10.1023/A:1021400606217>
274. Med. Vet. Entomol. 2001, 15, 438.
< J. R.: https://doi.org/10.1046/j.0269-283x.2001.00332.x>
275. Chem. Senses 2004, 29, 319.
< R. B., Lazzari C. R.: https://doi.org/10.1093/chemse/bjh035>
276. Experientia 1980, 36, 406.
< M., Vanhaelenfastre R., Geeraerts J.: https://doi.org/10.1007/BF01975114>
277. Bedoukian R. H.: WO/2008/150396, PCT/US2008/006696 (published 11. 12. 2008).
278. J. Chem. Ecol. 2003, 29, 377.
< P. H. G., Arrigoni E. D. B., Reckziegel A., Moreira J. A., Baraldi P. T., Vieira P. C.: https://doi.org/10.1023/A:1022634012212>
279. J. Chem. Ecol. 1994, 20, 2653.
< A. L., Gries G., Gries R., Giblin-Davis R. M., Oehlschlager A. C.: https://doi.org/10.1007/BF02036199>
280. J. Chem. Ecol. 1994, 20, 505.
< T. J., Giblin-Davis R. M., Gries G., Gries R., Perez A. L., Pierce H. D., Oehlschlager A. C.: https://doi.org/10.1007/BF02059593>
281. J. Chem. Ecol. 2007, 33, 1065.
< T., Kawakita A., Kato M.: https://doi.org/10.1007/s10886-007-9287-0>
282. Pest Manag. Sci. 2006, 62, 551.
< J. H., Kim H. K., Lee S. H., Ahn Y. J.: https://doi.org/10.1002/ps.1212>
283. Eur. J. Appl. Physiol. 2005, 95, 107.
< K., Inoue N., Ito Y., Kubota K., Sugimoto A., Kakuda T., Fushiki T.: https://doi.org/10.1007/s00421-005-1402-8>
284. Life Sci. 2006, 78, 2471.
< A. T., Rubattu P., Piga G. G., Fumagalli S., Boatto G., Pippia P., De Montis M. G.: https://doi.org/10.1016/j.lfs.2005.10.025>
285. J. Agric. Food Chem. 2008, 56, 9570.
< X., Klingeman W. E., Hu J., Chen F.: https://doi.org/10.1021/jf801651v>
286. Phytochemistry 1996, 41, 1477.
< A. K., Unelius C. R., Valterová I., Nilsson L. A.: https://doi.org/10.1016/0031-9422(95)00801-2>
287. J. Chem. Ecol. 2008, 34, 1536.
< C., Song Q.: https://doi.org/10.1007/s10886-008-9558-4>
288. Chem. Senses 2005, 30, 443.
< T., Stranden M., Borg-Karlson A. K., Mustaparta H.: https://doi.org/10.1093/chemse/bji039>
289. J. Chem. Ecol. 2003, 29, 1.
< A. K., Tengö J., Valterová I., Unelius C. R., Taghizadeh T., Tolasch T., Francke W.: https://doi.org/10.1023/A:1021964210877>
290. J. Chem. Ecol. 1978, 4, 437.
< G., Tengö J.: https://doi.org/10.1007/BF00989500>
291. J. Chem. Ecol. 1982, 8, 635.
< A., Lloyd H. A.: https://doi.org/10.1007/BF00989632>
292. J. Chem. Ecol. 1981, 7, 427.
< J. H., Tengö J.: https://doi.org/10.1007/BF00995765>
293. J. Chem. Ecol. 2005, 31, 1765.
< J., Brändli C., Vereecken N. J., Schulz C. M., Francke W., Schiestl F. P.: https://doi.org/10.1007/s10886-005-5926-5>
294. Food Chem. Toxicol. 2009, 47, 22.
< G. A., Carabin I. G.: https://doi.org/10.1016/j.fct.2008.11.006>
295. Parasitol. Res. 2008, 103, 959.
< A., Kannathasan K., Venkatesalu V.: https://doi.org/10.1007/s00436-008-1085-2>
296. J. Chem. Ecol. 2006, 32, 917.
< N.: https://doi.org/10.1007/s10886-006-9051-x>
297. J. Chem. Ecol. 2008, 34, 14.
< U. S., Dötterl S., Jürgens A.: https://doi.org/10.1007/s10886-007-9392-0>
298. J. Chem. Ecol. 2005, 31, 2019.
< T., Ozawa R., Sano K., Yano E., Takabayashi J.: https://doi.org/10.1007/s10886-005-6075-6>
299. Parasitol. Res. 2007, 101, 443.
< I., Alviano D. S., Vieira D. P., Alves P. B., Blank A. F., Lopes A. H., Alviano C. S., Rosa M. S.: https://doi.org/10.1007/s00436-007-0502-2>
300. Exp. Parasitol. 2007, 116, 283.
< G. F., Cardoso M. G., Guimarães L. G., Mendonça L. Z., Soares M. J.: https://doi.org/10.1016/j.exppara.2007.01.018>
301. J. Ethnopharmacol. 2005, 97, 305.
< M. C. T., Figueira G. M., Sartoratto A., Rehder V. L. G., Delarmelina C.: https://doi.org/10.1016/j.jep.2004.11.016>
302. J. Agric. Food Chem. 2005, 53, 7892.
< Y. S., Yang Y. C., Choi D. S., Ahn Y. J.: https://doi.org/10.1021/jf051127g>
303. Plant Syst. Evol. 1992, 182, 229.
< L., Knudsen J. T.: https://doi.org/10.1007/BF00939189>
304. J. Chem. Ecol. 2007, 33, 749.
< U., Dötterl S., Jürgens A., Aas G.: https://doi.org/10.1007/s10886-007-9257-6>
305. Su J. W., Zeng J. P., Qin X. W., Ge F.: J. Plant. Res., in press; epub 2008, Dec 10.
306. J. Chem. Ecol. 2008, 34, 1180.
< D. H., Nojima S., Hesler S. P., Zhang A., Linn C. E., Jr., Roelofs W. L., Loeb G. M.: https://doi.org/10.1007/s10886-008-9517-0>
307. Arthropod. Struct. 2000, 29, 33.
< P., Hallberg E., Subchev M.: https://doi.org/10.1016/S1467-8039(00)00011-6>
308. J. Insect. Physiol. 2005, 51, 1066.
< L., Ignell R., Löfqvist J., Hansson B. S.: https://doi.org/10.1016/j.jinsphys.2005.05.003>
309. J. Chem. Ecol. 2006, 32, 2475.
< M. A, Chamberlain K., Khan Z. R., Pickett J. A., Toshova T., Wadhams L. J., Woodcock C. M.: https://doi.org/10.1007/s10886-006-9165-1>
310. J. Chem. Ecol. 2006, 32, 1911.
< M. J., Schmelz E. A., Meagher R. L., Teal P. E.: https://doi.org/10.1007/s10886-006-9117-9>
311. J. Exp. Biol. 2005, 208, 787.
< H. T., Stranden M., Sandoz J. C., Menzel R., Mustaparta H.: https://doi.org/10.1242/jeb.01431>
312. PLoS ONE 2008, 3, e2832.
< E., Alessio G. A., Blande J. D., Heijari J., Holopainen J. K., Laaksonen T., Piirtola P., Klemola T.: https://doi.org/10.1371/journal.pone.0002832>
313. Giglio A., Brandmayr P., Dalpozzo R., Sindona G., Tagarelli A., Talarico F., Brandmayr T. Z., Ferrero E. A.: Microsc. Res. Tech., in press; epub 2008, Dec 9.
314. J. Chem. Ecol. 1984, 10, 561.
< J. R., Lusby W. R., Kochansky J. P., Abrams C. B.: https://doi.org/10.1007/BF00994221>
315. Anderson A. R., Wanner K. W., Trowell S. C., Warr C. G., Jaquin-Joly E., Zagatti P., Robertson H., Newcomb R. D.: Insect. Biochem. Mol. Biol., in press; epub 2009.
316. Prigli M., Suhayda J., Békéssy G.: WO/1991/007875, PCT/HU1989/000057 (published 13. 6. 1991).
317. Dickens J. C., Alford R. A.: WO/2002/013607, PCT/US2001/025857 (published 21. 2. 2002).
318. Shoseyov O., Wei S., Fluksman I.: WO/2006/040766, PCT/IL2005/001079 (published 20. 4. 2006).
319. Bengtsson M., Jaastad G., Kobro S., Löfqvist J., Witzgall P.: WO/2004/028256, PCT/SE2003/001440 (published 8. 4. 2004).
320. Aldrich J. R.: WO/2003/013242, PCT/US2002/024192 (published 20. 2. 2003).
321. Enan E.: WO/2008/011054, PCT/US2007/016255 (published 24. 1. 2008).
322. Souter P. F., Burdis J. A.: WO/2001/091555, PCT/US2001/017243 (published 6. 12. 2001).
323. Miltz J., Bigger S. W., Sonneveld C., Suppakul P.: WO/2006/000032, PCT/AU2005/000916 (published 5. 1. 2006).
324. Scherner C., Treu J., Breitenbach U., Zilz W., Kröpke R.: WO/2008/058719, PCT/EP2007/009834 (published 22. 5. 2008).
325. Chem. Biodivers. 2008, 5, 920.
< R., Metz S.: https://doi.org/10.1002/cbdv.200890105>
326. J. Chem. Ecol. 2003, 29, 1045.
< T., Solter S. R., Toth M., Ruther J., Francke W.: https://doi.org/10.1023/A:1022992516854>
327. J. Chem. Ecol. 2003, 29, 503.
< S., Sakata T., Yoshimura K., Robbins P. S., Morris B. D., Roelofs W. L.: https://doi.org/10.1023/A:1022621500016>
328. J. Chem. Ecol. 2007, 33, 405.
< J. P., Sirugue D., Abed-Vieillard D., Everaerts C., Le Quéré J. L., Bonnard O., Brossut R.: https://doi.org/10.1007/s10886-006-9224-7>
329. J. Chem. Ecol. 1994, 20, 2291.
< J. P., Le Quere J. L., Duffy J., Everaerts C., Brossut R.: https://doi.org/10.1007/BF02033204>
330. Microbes Infect. 2007, 9, 1402.
< S. C., Lu C. C., Horng Y. T., Soo P. C., Chang Y. L., Tsai Y. H., Lin C. S., Lai H. C.: https://doi.org/10.1016/j.micinf.2007.07.004>
331. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4927.
< C. M., Farag M. A., Hu C. H., Reddy M. S., Wei H. X., Paré P. W., Kloepper J. W.: https://doi.org/10.1073/pnas.0730845100>
332. Plant Physiol. 2004, 134, 1017.
< C. M., Farag M. A., Hu C. H., Reddy M. S., Kloepper J. W., Paré P. W.: https://doi.org/10.1104/pp.103.026583>
333. Physiol. Entomol. 2000, 25, 281.
< H., Honda K., Hayashi N.: https://doi.org/10.1046/j.1365-3032.2000.00193.x>
334. Z. Naturforsch., C: Biosci. 2005, 60, 779.
< W. F., Walsh A., Seyjagat J., Weldon P. J.: https://doi.org/10.1515/znc-2005-9-1019>
335. J. Agric. Food Chem. 2007, 55, 7810.
< A., Silva G., Palla G.: https://doi.org/10.1021/jf071206n>
336. Biotechnol. Lett. 2003, 25, 1887.
< R. A., Mauricio J. C., Ortega J. M., Medina M., Moreno J.: https://doi.org/10.1023/B:BILE.0000003977.96510.5f>
337. Int. J. Food Microbiol. 2003, 86, 163.
< P., Granchi L., Caruso M., Borra G., Palla G., Fiore C., Ganucci D., Caligiani A., Brandolini V.: https://doi.org/10.1016/S0168-1605(03)00254-X>
338. Eur. Heart J. 1990, 11, 788.
< K. R., Stalder H., Thoelen H.: https://doi.org/10.1093/oxfordjournals.eurheartj.a059798>
339. Cryobiology 1992, 29, 347.
< P.: https://doi.org/10.1016/0011-2240(92)90036-2>
340. Cryobiology 1996, 33, 54.
< M., Eschwege P., Cherruau C., Fontaliran F., Moreau F., Houssin D.: https://doi.org/10.1006/cryo.1996.0006>
341. J. Org. Chem. 1998, 63, 5929.
< P. A., Speake J. D.: https://doi.org/10.1021/jo980571y>
342. Kruse U., Mummert C., Gallinat S., Knott A.: WO/2006/128781, PCT/EP2006/062199 (published 7. 12. 2006).
343. Swaile D. F., Guskey G. J., Orr T. V.: WO/1999/056716, PCT/IB1999/000753 (published 11. 11. 1999).
344. Luebbe J. P., Guskey G. J., Orr T. V., Motley C. B.: WO/1999/056715, PCT/IB1999/000746 (published 11. 11. 1999).
345. Liebigs Ann. Chem. 1994, 1211.
< F., Fettköther R., Noldt U., Dettner K., König W. A., Francke W.: https://doi.org/10.1002/jlac.199419941212>
346. Experientia 1995, 51, 270.
< R., Dettner K., Schöder F., Meyer H., Francke W., Noldt U.: https://doi.org/10.1007/BF01931111>
347. Int. J. Insect Morphol. Embryol. 1995, 24, 223.
< U., Fettköther R., Dettner K.: https://doi.org/10.1016/0020-7322(95)93345-D>
348. Pest Manag. Sci. 2005, 61, 699.
< , V. P., Fettköther R., Noldt U., Dettner K.: https://doi.org/10.1002/ps.1044>
349. J. Chem. Ecol. 2005, 31, 2169.
< G. V. P., Fettköther R., Noldt U., Dettner K.: https://doi.org/10.1007/s10886-005-6083-6>
350. J. Chem. Ecol. 2004, 30, 1493.
< E. S., Ginzel M. D., Millar J. G., Hanks L. M.: https://doi.org/10.1023/B:JOEC.0000042064.25363.42>
351. J. Chem. Ecol. 2008, 34, 408.
< E. S., Moreira J. A., Millar J. G., Hanks L. M.: https://doi.org/10.1007/s10886-008-9425-3>
352. J. Med. Chem. 1972, 15, 1073.
< R. P., Mui P. T., Lasslo A., Boulware M. A.: https://doi.org/10.1021/jm00280a021>
353. J. Pharm. Sci. 1982, 71, 1014.
< W. G., Robinson P. B.: https://doi.org/10.1002/jps.2600710915>
354. J. Am. Mosq. Control Assoc. 1989, 5, 374.
L. C., Hooper R. L., Wirtz R. A., Gupta R. K.:
355. J. Am. Mosquito Control 1990, 6, 469.
Z. A., Rutledge L. C., Buescher M. D., Gupta R. K., Zakaria M. M.:
356. Chaudhuri D., Parsons M. W.: WO/1991/007943, PCT/US1990/006912 (published 13. 6. 1991).
357. Greef D.: WO/1997/030692, PCT/FR1997/000320 (published 28. 8. 1997).
358. Appl. Entomol. Zool. 1982, 17, 494.
< K.: https://doi.org/10.1303/aez.17.494>
359. J. Chem. Ecol. 1985, 11, 819.
< K., Takahashi J., Nakagawa Y., Sakai T.: https://doi.org/10.1007/BF01012070>
360. Appl. Entomol. Zool. 1986, 21, 21.
< K., Takahashi J., Nakagawa Y., Sakai T.: https://doi.org/10.1303/aez.21.21>
361. Appl. Entomol. Zool. 1987, 22, 110.
< K., Takahashi J., Sakai T.: https://doi.org/10.1303/aez.22.110>
362. Appl. Entomol. Zool. 1988, 23, 127.
< K.: https://doi.org/10.1303/aez.23.127>
363. Chem. Lett. 1984, 13, 263.
< T., Nakagawa Y., Takahashi J., Iwabuchi K., Ishii K.: https://doi.org/10.1246/cl.1984.263>
364. Appl. Entomol. Zool. 1987, 22, 25.
< Y., Matsuyama S., Suzuki T.: https://doi.org/10.1303/aez.22.25>
365. J. Chem. Ecol. 2006, 32, 195.
< D. R., Cork A., Phythian S. J., Chittamuru S., Jayarama B. K., Venkatesha M. G., Sreedharan K., Vinod Kumar P. K., Seetharama H. G., Naidu R.: https://doi.org/10.1007/s10886-006-9360-0>
366. J. Chem. Ecol. 2001, 27, 1.
< T. C., Prokopy R. J., Wright S. E., Phelan P. L., Haynes L. W.: https://doi.org/10.1023/A:1005667430877>
367. J. Chem. Ecol. 2003, 29, 1253.
< M. C., Stensmyr M. C., Bice S. B., Hansson B. S.: https://doi.org/10.1023/A:1023893926038>
368. Ann. Bot. (London) 2008, 102, 295.
< B., Kalinová B., Gustafsson M. H., Teichert H.: https://doi.org/10.1093/aob/mcn092>
369. J. Chem Ecol. 2008, 34, 614.
< R. T., Kainoh Y., Kugimiya S., Takabayashi J., Nakamura S.: https://doi.org/10.1007/s10886-008-9459-6>
370. J. Insect Physiol. 2003, 49, 857.
< I., Tauban D., Renou M., Mori K., Rochat D.: https://doi.org/10.1016/S0022-1910(03)00137-9>
371. J. Chem. Ecol. 1990, 16, 2899.
< L.: https://doi.org/10.1007/BF00979482>
372. J. Chem. Ecol. 1992, 18, 2261.
< D., Bonnard O., Quere J. L., Farine J. P., Brossut R.: https://doi.org/10.1007/BF00984949>
373. Naturwissenschaften 2006, 93, 286.
< R., Chen S. C., Chen Y. R., Ho H. Y.: https://doi.org/10.1007/s00114-006-0095-0>
374. Arch. Insect Biochem. Physiol. 2008, 68, 144.
< R., Chang H. W., Huang Z. Y., Yang R. L.: https://doi.org/10.1002/arch.20241>
375. Horm. Behav. 2007, 52, 252.
< S. Y., Huang Z. Y., Chen S. C., Yang R. L., Kou R.: https://doi.org/10.1016/j.yhbeh.2007.04.013>
376. Naturwissenschaften 2007, 94, 927.
< S. C., Yang R. L., Ho H. Y., Chou S. Y., Kou R.: https://doi.org/10.1007/s00114-007-0265-8>
377. J. Chem. Ecol. 2000, 26, 1367.
< J., Braks M. A. H., Brack A. A., Adam W., Dekker T., Posthumus M. A., Van Beek T. A., Van Loon J. J. A.: https://doi.org/10.1023/A:1005475422978>
378. J. Agric. Food Chem. 2000, 48, 6191.
< F., Zorn H., Berger R. G.: https://doi.org/10.1021/jf000535b>
379. Nijssen L. M., Visscher C. A., Maarse H., Willemsens L. C. (Eds): Volatile Compounds in Food. Netherlands TNO Nutrition and Food Research Institute, Zeist 1996.
380. Dairy Sci. 2004, 87, 1999.
< Y. K., Karagul-Yuceer Y., Drake M. A., Singh T. K., Yoon Y., Cadwallader K. R. J.: https://doi.org/10.3168/jds.S0022-0302(04)70017-X>
381. J. Chem. Ecol. 1997, 23, 1635.
< K., Leal W. S., Nakashima T., Tokoro M., Ono M., Nakanishi M.: https://doi.org/10.1023/B:JOEC.0000006427.56337.6c>
382. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 1038.
< W. S., Shi X. W., Nakamuta K., Ono M., Meinwald J.: https://doi.org/10.1073/pnas.92.4.1038>
383. Naturwissenschaften 2006, 93, 543.
< A. M., Lacey E. S., Hanks L. M.: https://doi.org/10.1007/s00114-006-0142-x>
384. J. Insect Behav. 2007, 20, 117.
< E. S., Ray A. M., Hanks L. M.: https://doi.org/10.1007/s10905-006-9068-6>
385. Entomol. Exp. Appl. 2007, 122, 171.
< E. S., Moreira J. A., Millar J. G., Ray A. M., Hanks L. M.: https://doi.org/10.1111/j.1570-7458.2006.00508.x>
386. Tetrahedron Lett. 1984, 25, 1533.
< N. R., Phillips J. K., Burkholder W. E., Fales H. M., Chen C. W., Roller P. P., Ma M.: https://doi.org/10.1016/S0040-4039(01)90002-4>
387. J. Chem. Ecol. 1985, 11, 1263.
< J. K., Walgenbach C. A., Klein J. A., Burkholder W. E., Schmuff N. R., Fales H. M.: https://doi.org/10.1007/BF01024114>
388. J. Chem. Ecol. 1993, 19, 723.
< T. W., Jiang X.-L., Burkholder W. E., Phillips J. K., Tran H. Q.: https://doi.org/10.1007/BF00985004>
389. J. Chem. Ecol. 1987, 13, 2159.
< C. A., Phillips J. K., Burkholder W. E., King G. G. S., Slessor K. N., Mori K.: https://doi.org/10.1007/BF01012564>
390. Science 1968, 161, 1346.
< F., Jr., Turner R. B., Gouck H. K., Beroza M., Smith N.: https://doi.org/10.1126/science.161.3848.1346>
391. Ann. Entomol. Soc. Am. 1970, 63, 760.
< C. N., Smith N., Gouck H. K., Weidhaas D. E., Gilbert I. H., Mayer M. S., Smittle B. J., Hofbauer A.: https://doi.org/10.1093/aesa/63.3.760>
392. Chem. Senses 2005, 30, 145.
< R. C., Qiu Y. T., Van Loon J. J. A., Takken W.: https://doi.org/10.1093/chemse/bji010>
393. Nanosci. Nanotechnol. 2006, 6, 2608.
< H., Le Doan T., Couvreur P. J.: https://doi.org/10.1166/jnn.2006.453>
394. Facial Plast. Surg. Clin. North Am. 2007, 15, 91.
< S. P., Sidle D. M.: https://doi.org/10.1016/j.fsc.2006.10.005>
395. J. Med. Chem. 1994, 37, 1908.
< G., Grassberger M. A., Meingassner J. G., Schulz G., Schaude M.: https://doi.org/10.1021/jm00039a002>
396. J. Am. Chem. Soc. 1988, 110, 2959.
< M. J., Whitesides G. M.: https://doi.org/10.1021/ja00217a044>
397. Clin. Chim. Acta 1973, 48, 213.
< J. E., Landaas S., Eldjarn L.: https://doi.org/10.1016/0009-8981(73)90367-7>
398. Scand. J. Clin. Lab. Invest. 1975, 35, 259.
< S., Pettersen J. E.: https://doi.org/10.3109/00365517509095738>
399. J. Antibiot. (Tokyo) 2007, 60, 143.
< A., Yano T., Kozuma S., Takatsu T.: https://doi.org/10.1038/ja.2007.14>
400. Biochem. Syst. Ecol. 1990, 18, 549.
< T., Biller A., Witte L., Ernst L., Boppre M.: https://doi.org/10.1016/0305-1978(90)90127-2>
401. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 6834.
< S., Francke W., Boppré M., Eisner T., Meinwald J.: https://doi.org/10.1073/pnas.90.14.6834>
402. Insect Biochem. Mol. Biol. 2007, 37, 80.
< T., Theuring C., Klewer N., Schulz S., Hartmann T.: https://doi.org/10.1016/j.ibmb.2006.10.005>
403. J. Nat. Prod. 2003, 66, 1613.
< D. N., Hashimoto T., Toyota M., Asakawa Y.: https://doi.org/10.1021/np030185y>
404. Science 1993, 260, 1635.
< S., Toft S.: https://doi.org/10.1126/science.260.5114.1635>
405. J. Chem. Ecol. 1985, 11, 1093.
< B. V., Munro Z., Röth M., Spies H. S. C., Truter V., Geertsema H., Habich A.: https://doi.org/10.1007/BF01020678>
406. Yoneda T., Naoi N., Miichi H., Nakamura S., Hata T., Saito F., Ohnuma T.: WO/2000/023048, PCT/JP1998/004757 (published 27. 4. 2000).
407. Yoneda T., Nakayama Y., Miichi H., Saito F., Nakamura S.: WO/2001/051065, PCT/JP2000/000081 (published 19. 7. 2001).
408. Umeda Y., Nakashima H., Shibuya M., Saitoh Y., Okada S., Namakura S.: WO/2005/032534, PCT/JP2004/014774 (published 14. 4. 2005).
409. J. Antibiot. (Tokyo) 1993, 46, 1347.
< Y., Ikai K., Umeda Y., Ogawa A., Takesako K., Kato I., Naganawa H.: https://doi.org/10.7164/antibiotics.46.1347>
410. J. Org. Chem. 2006, 71, 6031.
< T., Warabi K., Sørensen D., Zimmerman W. T., Kelly M. T., Andersen R. J.: https://doi.org/10.1021/jo060667p>
411. Org. Lett. 2006, 8, 5601.
< S., Sunazuka T., Nagai K., Arai T., Shiomi K., Matsui R., Omura S.: https://doi.org/10.1021/ol0623365>
412. J. Chem. Ecol. 2006, 32,1043.
< T. C., Jones G. E., Allsopp M. H., Hepburn R.: https://doi.org/10.1007/s10886-006-9053-8>
413. Fertil. Steril. 2002, 78, 1107.
< L. J., Anderson R. A., Diao X. H., Waller D. P., Chany C., Feathergill K., Doncel G., Cooper M. D., Herold B.: https://doi.org/10.1016/S0015-0282(02)04210-3>
414. FEBS Lett. 2007, 581, 4596.
< T. L., Teleshova N., Rapista A., Paluch M., Anderson R. A., Waller D. P., Zaneveld L. J. D., Granelli-Piperno A., Klotman M. E.: https://doi.org/10.1016/j.febslet.2007.08.048>
415. Biomacromolecules 2007, 8, 3308.
< M., Yu B., Wyatt V., Griffith J., Craft T., Neurath A. R., Strick N., Li Y. Y., Wertz D. L., Pojman J. A., Lowe A. B.: https://doi.org/10.1021/bm070221y>
416. Bioorg. Med. Chem. Lett. 2001, 11, 2279.
< T., Wu Y., Doughan B., Kane-Maguire K., Marlowe C. K., Kanter J. P., Woolfrey J., Huang B., Wong P., Sinha U., Park G., Malinowski J., Hollenbach S., Scarborough R. M., Zhu B. Y.: https://doi.org/10.1016/S0960-894X(01)00447-4>
417. Chirality 2004, 16, 168.
< J., Majo V. J., Mann J. J., Kumar J. S.: https://doi.org/10.1002/chir.20004>
418. Can. J. Microbiol. 1991, 37, 258.
< H. H., Tsantrizos Y. S., Fortin J. A., Ogilvie K. K.: https://doi.org/10.1139/m91-040>
419. Biel S., Terstegen L., Kux U., Schulz U., Ripke S.: WO/2008/049650, PCT/EP2007/054748, 2008.
420. Biel S., Weinert K.: WO/2009/012925, PCT/EP2008/005849, 2009.
421. Biel S., Weinert K.: WO/2009/012927, PCT/EP2008/005851, 2009.
422. Satyanarayana R. R., Thirumalai R. S., Eswaraiah S., Satyanarayana R.: WO/2009/001372, PCT/IN2008/000174 (published 31. 12. 2008).
423. Inghardt T., Johansson A., Svensson A.: WO/2002/044145, PCT/SE2001/002657 (published 6. 6. 2002).
424. Inghardt T., Johansson A., Svensson A.: WO/2003/018551, PCT/SE2002/001557 (published 6. 3. 2003).
425. Biochem. Pharmacol. 2008, 76, 631.
< M., Hintersdorf A., Huse K., Sack U., Bigl M., Groth M., Santel T., Buchold M., Lindner I., Otto A., Sicker D., Schellenberger W., Almendinger J., Pustowoit B., Birkemeyer C., Platzer M., Oerlecke I., Hemdan N., Birkenmeier G.: https://doi.org/10.1016/j.bcp.2008.06.006>
426. Br. J. Dermatol. 1984, 110, 475.
< C., George D., Leech R. W., Black J. G., Howes D., Vickers C. F.: https://doi.org/10.1111/j.1365-2133.1984.tb04663.x>
427. Takahashi S., Kawato S.: WO/2003/073167, PCT/JP2003/001987 (published 4. 9. 2003).
428. Machinek A.: WO/2007/124963, PCT/EP2007/050822 (published 8. 11. 2007).
429. J. Chromatogr., A 2006, 1137, 223.
< E., Cacho J., Ferreira V.: https://doi.org/10.1016/j.chroma.2006.10.020>
430. Nemoto H., Matsuya Y.: WO/2004/048360, PCT/JP2002/012304 (synthesis 10. 6. 2004).
431. Tetrahedron Lett. 1987, 28, 6145.
< J. K., Miller S. P. F., Andersen J. F., Fales H. M., Burkholder W. E.: https://doi.org/10.1016/S0040-4039(00)61831-2>
432. Entomol. Exp. Appl. 1989, 51, 149.
< J. K., Chong J. M., Andersen J. F., Burkholder W. E.: https://doi.org/10.1007/BF00186732>
433. J. Chem. Ecol. 1996, 22, 1639.
< J., Van Wyk C. B., White P. R., Gerrard C. M., Mori K.: https://doi.org/10.1007/BF02272404>
434. J. Chem. Ecol. 2005, 31, 893.
< E., Arnault I., Auger J., Petersen K. S., Oliver J. E.: https://doi.org/10.1007/s10886-005-3551-y>
435. J. Chem. Ecol. 1994, 20, 3281.
< D. G., Moore C. J., Aldrich J. R.: https://doi.org/10.1007/BF02033726>
436. J. Chem. Ecol. 2001, 27, 1437.
< S. R., Dani F. R., Jones G. R., Morgan E. D., Schmidt J. O.: https://doi.org/10.1023/A:1010373427774>
437. Cryobiology 2002, 44, 150.
< A., Cacela C., Duarte M. L., Fausto R.: https://doi.org/10.1016/S0011-2240(02)00017-2>
438. Chem. Mater. 2007, 19, 2222.
< D., Pillai K., Chyan O. M., Tang L., Timmons R. B.: https://doi.org/10.1021/cm0630688>
439. Bioorg. Med. Chem. 2002, 10, 2511.
< R., Costi R., Artico M., Massa S., Ragno R., Marshall G. R., La Colla P.: https://doi.org/10.1016/S0968-0896(02)00119-0>
440. Chem. Pharm. Bull. 2008, 56, 1147.
< L., Yang Q., Wang Y., Hu Y., Luo X., Bai D., Li S.: https://doi.org/10.1248/cpb.56.1147>
441. Pharmazie 1998, 53, 672.
H.:
442. Gernon M. D., Trumpfheller C. M., Picker B. A., Jr.: WO/2004/024368, PCT/US2003/027639 (published 25. 3. 2004).
443. Cao G., Shah M. J.: WO/2003/106343, PCT/US2003/012713 (published 24. 12. 2003).
444. Melanoma Res. 2003, 13, 603.
< J., Otake H., Inoue S., Wakamatsu K., Olivares C., Solano F., Hasegawa K., Ito S.: https://doi.org/10.1097/00008390-200312000-00010>
445. Kaouas A., Renes H., Winkel C.: WO/2007/027095, PCT/NL2006/050216 (published 8. 3. 2007).
446. Bioorg. Med. Chem. Lett. 2004, 14, 191.
< R., Demare P., Hong E., Rosas M. A., Escalante J., Muñoz-Muñiz O., Juaristi E., Regla I.: https://doi.org/10.1016/j.bmcl.2003.09.070>
447. Arzneim.–Forsch. 1996, 46, 891.
H., Tozkoparan B., Ertan M., Aksu F., Inan S. Y.:
448. Acta Pol. Pharm. 1998, 55, 487.
H., Antkiewicz-Michaluk L.:
449. Biochem. Pharmacol. 1984, 33, 2761.
< H. J., Thuet M. J., Ancelin M. L., Philippot J. R., Chavis C.: https://doi.org/10.1016/0006-2952(84)90693-2>
450. FEBS Lett. 1986, 202, 217.
< M. L., Vial H. J.: https://doi.org/10.1016/0014-5793(86)80690-1>
451. Acta Pol. Pharm. 1999, 56, 87.
T., Czarnecki R., Jastrzebska M.:
452. J. Biomed. Mater. Res. 2002, 60, 592.
< K., Gogolewski S.: https://doi.org/10.1002/jbm.10100>
453. Asgharian B.: WO/1998/025649, PCT/US1997/020826 (published 18. 6. 1998).
454. Fla. Entomol. 1994, 77, 164.
< R. M., Weissling T. J., Oehlschlager A. C., Gonzalez L. M.: https://doi.org/10.2307/3495883>
455. J. Comb. Chem. 2003, 5, 172.
< R. E., Protopopova M., Crooks E., Slayden R. A., Terrot M., Barry C. E.: https://doi.org/10.1021/cc020071p>
456. B-ENT. 2008, 4, 249.
G., Sagit M., Saka C., Saka D., Oktay M., Hucumenoglu S., Akin I.:
457. Hunter R. L.: WO/1988/006038, PCT/US1988/000510 (published 25. 8. 1988).
458. Goldstein B. P., Arain T. M.: WO/1994/021274, PCT/EP1994/000732 (published 29. 9. 1994).
459. Poupard J. A.: WO/1994/027600, PCT/IB1994/000204 (published 8. 12. 1994).
460. Jacobs W. R. Jr., Musser J., Telenti A.: WO/1998/041533, PCT/US1998/005128 (published 24. 9. 1998).
461. ShipmanR.: WO/2000/036142, PCT/CA1999/001177 (published 22. 6. 2000).
462. Bakulesh M. K.: WO/2002/000163, PCT/IB2001/001132 (published 3. 1. 2002).
463. Bakulesh M. K.: WO/2002/000165, PCT/IB2001/001136 (published 3. 1. 2002).
464. Sen H., Jindal K. C., Deo K. D., Gandhi K. T.: WO/2002/087547, PCT/IN2001/000093 (published 7. 11. 2002).
465. Zhang Y.: WO/2004/062607, PCT/US2004/000544 (published 29. 7. 2004).
466. Sapte V. R.: WO/2005/074937, PCT/IN2004/000178 (published 18. 8. 2005).
467. Sapte V. R.: WO/2005/107741, PCT/IN2004/000166 (published 17. 11. 2005).
468. Protopopova M. N., Einck L., Nikonenko B., Chen P.: WO/2007/005896, PCT/US2006/026078 (published 11. 1. 2007).
469. J. Phys. Chem. B 2007, 111, 9940.
< C. M., Grant G. H.: https://doi.org/10.1021/jp071059w>
470. Tsuchiya S., Hiratsuka K., Fukuzaki A., Takenawa N., Osaka K., Miura Y.: WO/1995/008527, PCT/JP1994/001551 (published 30. 3. 1995).
471. Badetti R.: WO/2000/056281, PCT/EP1999/007917 (published 28. 9. 2000).
472. Key Pharmaceuticals, Incorporated: WO/1982/000099, PCT/US1981/000893 (published 21. 1. 1982).
473. Astrup A.: WO/1991/000730, PCT/DK1990/000106 (published 24. 1. 1991).
474. Booth A. R., Sherman W., Raven P., Caffrey J. L., Yorio T., Forster M., Gwirtz P.: WO/1999/025328, PCT/US1998/023479 (published 27. 5. 1999).
475. Int. J. Tuberc. Lung Dis. 2000, 4, 2146.
C.: