Collect. Czech. Chem. Commun. 2010, 75, 1115-1123
https://doi.org/10.1135/cccc2010073
Published online 2010-11-09 12:03:53

Revisiting B20H16 by means of a joint computational/experimental NMR approach

Drahomír Hnyka,*, Josef Holuba, Tomáš Jelínekb, Jan Macháčeka and Michael G. S. Londesborougha,*

a Institute of Inorganic Chemistry, Academy of Science of the Czech Republic, v.v.i., 250 68 Husinec-Řež, Czech Republic
b Katchem Ltd., 250 68 Husinec-Řež, Czech Republic

References

1. Schleyer P. v. R., Najafian K.: Inorg. Chem. 1998, 37, 3454. <https://doi.org/10.1021/ic980110v>
2. Beckett M. A., Croo J. E., Greenwood N. N., Kennedy J. D.: J. Chem. Soc., Dalton Trans. 1986, 1879. <https://doi.org/10.1039/dt9860001879>
3. See, e.g., Hnyk D., Rankin D. W. H.: Dalton Trans. 2009, 585. The geometries calculated at a correlated level of theory (MP2) are found to be superior both to those derived in terms of a Hartree–Fock scheme and, to some extent, to DFT approaches. <https://doi.org/10.1039/b806774k>
4. For computational study, see Bühl M., Hnyk D., Macháček J.: Chem. Eur. J. 2005, 11, 4109. <https://doi.org/10.1002/chem.200401202>
5a. Jemmis E. D., Balakrisnaranjan M. M., Pancharatna P. D.: J. Am. Chem. Soc. 2001, 123, 4313. <https://doi.org/10.1021/ja003233z>
5b. Jemmis E. D., Balakrisnaranjan M. M., Pancharatna P. D.: Chem. Rev. 2002, 102, 93. <https://doi.org/10.1021/cr990356x>
6a. Pitochelli A. R., Hawthorne M. F.: J. Am. Chem. Soc. 1962, 84, 3218. <https://doi.org/10.1021/ja00875a058>
6b. Londesborough M. G. S., Bould J., Baše T., Hnyk D., Bakardjiev M., Holub J., Císařová I., Kennedy J. D.: Inorg. Chem. 2010, 49, 4092. <https://doi.org/10.1021/ic901976y>
7. Bernhardt E., Brauer D. J., Finze M., Willner H.: Angew. Chem., Int. Ed. Engl. 2007, 46, 2927. 11B NMR spectra were recorded in CD3CN and we computed δ(11B) NMR chemical shifts with respect to BF3·OEt2 at GIAO-B3LYP/II//MP2/6-31G* with the following results (in ppm; experimental values from ref.10 are in brackets): B3, 6.0 (4.7); B2, –18.9 (–18.4); B1, 4.6 (1.9); B4, –23.7 (–20.6). <https://doi.org/10.1002/anie.200604077>
8. Friedman L. B., Dobrott R. D., Lipscomb W. N: J. Am. Chem. Soc. 1963, 85, 3505. <https://doi.org/10.1021/ja00904a048>
9. Miller N. E., Muetterties E. L.: J. Am. Chem. Soc. 1963, 85, 3506. <https://doi.org/10.1021/ja00904a049>
10. Alternatively, B20H16 can be viewed as a result of sharing two decaboranes (after removing hydrogen bridges and two terminal hydrogens from each moiety) mutually twisted by 90°.
11. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Gross J. P., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford (CT) 2004.
12. Huzinaga S.: Approximate Atomic Wave Functions. University of Alberta, Edmonton 1971. IGLO-II basis sets can be downloaded through http://www.demon-software.com/ public_html/download.html.
13. Kutzelnigg W., Fleischer U., Schindler M.: NMR Basic Principles and Progress, Vol. 23, pp. 165–262. Springer, Berlin 1990.
14a. Reed A. E., Weinstock R. B., Weinhold F.: J. Chem. Phys. 1985, 83, 735. <https://doi.org/10.1063/1.449486>
14b. Reed A. E., Weinhold F.: Chem. Rev. 1988, 88, 899. <https://doi.org/10.1021/cr00088a005>
15. Heřmánek S.: Chem. Rev. 1992, 92, 325. <https://doi.org/10.1021/cr00010a007>
16. Miller N. E., Forstner J. A., Muetterties E. L.: Inorg. Chem. 1964, 3, 1690. <https://doi.org/10.1021/ic50022a007>
17. Enemark J., Friedman L. B., Hartsuck J. A., Lipscomb W. N.: J. Am. Chem. Soc. 1966, 88, 3659. <https://doi.org/10.1021/ja00967a043>
18. Shameema O., Pathak B., Jemmis E. D.: Inorg. Chem. 2008, 47, 4375. <https://doi.org/10.1021/ic702509j>
19. Balakrishnarajan M. M., Jemmis E. D.: J. Am. Chem. Soc. 2000, 122, 4516. <https://doi.org/10.1021/ja994199v>
20. For charge distribution in 1,2-C2B10H12, see Hnyk D., Všetečka V., Drož L., Exner O.: Collect. Czech. Chem. Commun. 2001, 66, 1375. <https://doi.org/10.1135/cccc20011375>
21. Jemmis E. D., Jayasree E. G.: Acc. Chem. Res. 2003, 36, 816. <https://doi.org/10.1021/ar0300266>