Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2010, 75, 447-462
https://doi.org/10.1135/cccc2009113
Published online 2010-04-15 09:30:49

The effect of truncation and shift on virial coefficients of Lennard–Jones potentials

Katherine R. S. Shaul, Andrew J. Schultz and David A. Kofke*

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA

Crossref Cited-by Linking

  • Stephan Simon, Urschel Maximilian: Characteristic curves of the Mie fluid. Journal of Molecular Liquids 2023, 383, 122088. <https://doi.org/10.1016/j.molliq.2023.122088>
  • Fertig David, Stephan Simon: Influence of dispersive long-range interactions on transport and excess properties of simple mixtures. Molecular Physics 2023, 121. <https://doi.org/10.1080/00268976.2022.2162993>
  • Schmitt Sebastian, Vo Truong, Lautenschlaeger Martin P., Stephan Simon, Hasse Hans: Molecular dynamics simulation study of heat transfer across solid–fluid interfaces in a simple model system. Molecular Physics 2022, 120. <https://doi.org/10.1080/00268976.2022.2057364>
  • Kuznietsov Volodymyr A., Savchuk Oleh, Gorenstein Mark I., Koch Volker, Vovchenko Volodymyr: Critical point particle number fluctuations from molecular dynamics. Phys. Rev. C 2022, 105. <https://doi.org/10.1103/PhysRevC.105.044903>
  • Stephan Simon, Deiters Ulrich K.: Characteristic Curves of the Lennard-Jones Fluid. Int J Thermophys 2020, 41. <https://doi.org/10.1007/s10765-020-02721-9>
  • Stephan Simon, Staubach Jens, Hasse Hans: Review and comparison of equations of state for the Lennard-Jones fluid. Fluid Phase Equilibria 2020, 523, 112772. <https://doi.org/10.1016/j.fluid.2020.112772>
  • Stephan Simon, Hasse Hans: Influence of dispersive long-range interactions on properties of vapour–liquid equilibria and interfaces of binary Lennard-Jones mixtures. Molecular Physics 2020, 118, e1699185. <https://doi.org/10.1080/00268976.2019.1699185>
  • Stephan Simon, Thol Monika, Vrabec Jadran, Hasse Hans: Thermophysical Properties of the Lennard-Jones Fluid: Database and Data Assessment. J. Chem. Inf. Model. 2019, 59, 4248. <https://doi.org/10.1021/acs.jcim.9b00620>
  • Gottschalk Matthias: An EOS for the Lennard-Jones fluid: A virial expansion approach. AIP Advances 2019, 9. <https://doi.org/10.1063/1.5119761>
  • Thol Monika, Rutkai Gabor, Köster Andreas, Lustig Rolf, Span Roland, Vrabec Jadran: Equation of State for the Lennard-Jones Fluid. Journal of Physical and Chemical Reference Data 2016, 45. <https://doi.org/10.1063/1.4945000>
  • Urrutia Ignacio, Paganini Iván E.: Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls. The Journal of Chemical Physics 2016, 144. <https://doi.org/10.1063/1.4947587>
  • Thol Monika, Rutkai Gabor, Span Roland, Vrabec Jadran, Lustig Rolf: Equation of State for the Lennard-Jones Truncated and Shifted Model Fluid. Int J Thermophys 2015, 36, 25. <https://doi.org/10.1007/s10765-014-1764-4>
  • Feng Chao, Schultz Andrew J., Chaudhary Vipin, Kofke David A.: Eighth to sixteenth virial coefficients of the Lennard-Jones model. The Journal of Chemical Physics 2015, 143. <https://doi.org/10.1063/1.4927339>
  • Lustig Rolf, Rutkai Gabor, Vrabec Jadran: Thermodynamic correlation of molecular simulation data. Molecular Physics 2015, 113, 910. <https://doi.org/10.1080/00268976.2015.1023752>
  • Ushcats M. V.: Modified Lennard-Jones model: Virial coefficients to the 7th order. The Journal of Chemical Physics 2014, 140. <https://doi.org/10.1063/1.4882896>
  • Ashton Douglas J., Wilding Nigel B.: Three-body interactions in complex fluids: Virial coefficients from simulation finite-size effects. The Journal of Chemical Physics 2014, 140. <https://doi.org/10.1063/1.4883718>
  • Ushcats M. V.: Communication: Low-temperature approximation of the virial series for the Lennard-Jones and modified Lennard-Jones models. The Journal of Chemical Physics 2014, 141. <https://doi.org/10.1063/1.4895126>
  • Ushcats M.V. Ushcats M.V.: Virial Coefficients of Modified Lennard-Jones Potential. Ukr. J. Phys. 2014, 59, 172. <https://doi.org/10.15407/ujpe59.02.0172>
  • Kim Hye Min, Schultz Andrew J., Kofke David A.: Second through fifth virial coefficients for model methane–ethane mixtures. Fluid Phase Equilibria 2013, 351, 69. <https://doi.org/10.1016/j.fluid.2012.10.014>
  • Shaul Katherine R. S., Schultz Andrew J., Kofke David A.: Path-integral Mayer-sampling calculations of the quantum Boltzmann contribution to virial coefficients of helium-4. The Journal of Chemical Physics 2012, 137. <https://doi.org/10.1063/1.4764857>
  • Tan Tai Boon, Schultz Andrew J., Kofke David A.: Virial coefficients, equation of state, and solid–fluid coexistence for the soft sphere model. Molec Phys 2011, 109, 123. <https://doi.org/10.1080/00268976.2010.520041>