Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2010, 75, 577-591
https://doi.org/10.1135/cccc2009540
Published online 2010-05-20 11:30:11

Development of the trappe force field for ammonia

Ling Zhang and J. Ilja Siepmann*

Departments of Chemistry and of Chemical Engineering and Materials Science, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455-0431, USA

Crossref Cited-by Linking

  • Stavroglou Georgios K., Tylianakis Emmanuel, Froudakis George E.: Tailoring ammonia capture in MOFs and COFs: A multi‐scale and machine learning comprehensive investigation of functional group modification. ChemPhysChem 2024, 25. <https://doi.org/10.1002/cphc.202300721>
  • Mohamed Amro M.O., Bicer Yusuf: The Search for Efficient and Stable Metal-Organic Frameworks for Photocatalysis: Atmospheric Fixation of Nitrogen. Applied Surface Science 2022, 583, 152376. <https://doi.org/10.1016/j.apsusc.2021.152376>
  • Patel Roshan, Castro Jorge, Tsapatsis Michael, Siepmann J. Ilja: Molecular Simulations Probing the Adsorption and Diffusion of Ammonia, Nitrogen, Hydrogen, and Their Mixtures in Bulk MFI Zeolite and MFI Nanosheets at High Temperature and Pressure. J. Chem. Eng. Data 2022, 67, 1779. <https://doi.org/10.1021/acs.jced.2c00086>
  • Mohamed Amro M.O., Bicer Yusuf: A comprehensive methodology to screen metal-organic frameworks towards sustainable photofixation of nitrogen. Computers & Chemical Engineering 2021, 144, 107130. <https://doi.org/10.1016/j.compchemeng.2020.107130>
  • Emelianova Alina, Gor Gennady Y.: Molecular Simulations of Vapor–Liquid Equilibrium of Isocyanates. J. Phys. Chem. B 2021, 125, 12528. <https://doi.org/10.1021/acs.jpcb.1c07132>
  • Day Brian A., Wilmer Christopher E.: Computational Design of MOF-Based Electronic Noses for Dilute Gas Species Detection: Application to Kidney Disease Detection. ACS Sens. 2021, 6, 4425. <https://doi.org/10.1021/acssensors.1c01808>
  • Liu Zhilu, An Guoliang, Xia Xiaoxiao, Wu Shaofei, Li Song, Wang Liwei: The potential use of metal–organic framework/ammonia working pairs in adsorption chillers. J. Mater. Chem. A 2021, 9, 6188. <https://doi.org/10.1039/D1TA00255D>
  • Matito-Martos I., Martin-Calvo A., Ania C.O., Parra J.B., Vicent-Luna J.M., Calero S.: Role of hydrogen bonding in the capture and storage of ammonia in zeolites. Chemical Engineering Journal 2020, 387, 124062. <https://doi.org/10.1016/j.cej.2020.124062>
  • Zhao Yingguo, Zhang Shaoyong, Wu Laxia, Guo Chang, Song Xiaowei: Multiscale study on ammonia adsorption by Li-Doped COF-10. Computational and Theoretical Chemistry 2020, 1175, 112744. <https://doi.org/10.1016/j.comptc.2020.112744>
  • Eggimann Becky L., Sun Yangzesheng, DeJaco Robert F., Singh Ramanish, Ahsan Muhammad, Josephson Tyler R., Siepmann J. Ilja: Assessing the Quality of Molecular Simulations for Vapor–Liquid Equilibria: An Analysis of the TraPPE Database. J. Chem. Eng. Data 2020, 65, 1330. <https://doi.org/10.1021/acs.jced.9b00756>
  • Wolffis Jarod J., Vanpoucke Danny E.P., Sharma Amit, Lawler Keith V., Forster Paul M.: Predicting partial atomic charges in siliceous zeolites. Microporous and Mesoporous Materials 2019, 277, 184. <https://doi.org/10.1016/j.micromeso.2018.10.028>
  • Matito-Martos I., García-Reyes J., Martin-Calvo A., Dubbeldam D., Calero S.: Improving Ammonia Production Using Zeolites. J. Phys. Chem. C 2019, 123, 18475. <https://doi.org/10.1021/acs.jpcc.9b05366>
  • Loi Quang K., Prasetyo Luisa, Tan Shiliang, Do D. D., Nicholson D.: Nonwetting/Prewetting/Wetting Transition of Ammonia on Graphite. Langmuir 2019, 35, 641. <https://doi.org/10.1021/acs.langmuir.8b03634>
  • Demir Hakan, Cramer Christopher J., Siepmann J. Ilja: Computational screening of metal–organic frameworks for biogas purification. Mol. Syst. Des. Eng. 2019, 4, 1125. <https://doi.org/10.1039/C9ME00095J>
  • Wang Meng, Becker Tim M., Schouten Bob A., Vlugt Thijs J.H., Infante Ferreira Carlos A.: Ammonia/ionic liquid based double-effect vapor absorption refrigeration cycles driven by waste heat for cooling in fishing vessels. Energy Conversion and Management 2018, 174, 824. <https://doi.org/10.1016/j.enconman.2018.08.060>
  • Becker Tim M., Wang Meng, Kabra Abhishek, Jamali Seyed Hossein, Ramdin Mahinder, Dubbeldam David, Infante Ferreira Carlos A., Vlugt Thijs J. H.: Absorption Refrigeration Cycles with Ammonia–Ionic Liquid Working Pairs Studied by Molecular Simulation. Ind. Eng. Chem. Res. 2018, 57, 5442. <https://doi.org/10.1021/acs.iecr.8b00442>
  • Rahbari A., Hens R., Nikolaidis I. K., Poursaeidesfahani A., Ramdin M., Economou I. G., Moultos O. A., Dubbeldam D., Vlugt T. J. H.: Computation of partial molar properties using continuous fractional component Monte Carlo. Molecular Physics 2018, 116, 3331. <https://doi.org/10.1080/00268976.2018.1451663>
  • Iskrenova E.K., Patnaik S.S.: Solvent effects in the thermal decomposition reaction of ammonium carbamate: A computational molecular dynamics study of the relative solubilities of CO2 and NH3 in water, ethylene glycol, and their mixtures. International Journal of Heat and Mass Transfer 2016, 100, 224. <https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.050>
  • Stubbs John M.: Molecular simulations of supercritical fluid systems. The Journal of Supercritical Fluids 2016, 108, 104. <https://doi.org/10.1016/j.supflu.2015.10.027>
  • Moghadam Peyman Z., Ghosh Pritha, Snurr Randall Q.: Understanding the Effects of Preadsorbed Perfluoroalkanes on the Adsorption of Water and Ammonia in MOFs. J. Phys. Chem. C 2015, 119, 3163. <https://doi.org/10.1021/jp511835d>
  • Vahid A., Maginn E. J.: Monte Carlo simulation and SAFT modeling study of the solvation thermodynamics of dimethylformamide, dimethylsulfoxide, ethanol and 1-propanol in the ionic liquid trimethylbutylammonium bis(trifluoromethylsulfonyl)imide. Phys. Chem. Chem. Phys. 2015, 17, 7449. <https://doi.org/10.1039/C4CP05961A>
  • Ghosh Pritha, Kim Ki Chul, Snurr Randall Q.: Modeling Water and Ammonia Adsorption in Hydrophobic Metal–Organic Frameworks: Single Components and Mixtures. J. Phys. Chem. C 2014, 118, 1102. <https://doi.org/10.1021/jp410758t>
  • Rai Neeraj, Siepmann J. Ilja: Transferable Potentials for Phase Equilibria. 10. Explicit-Hydrogen Description of Substituted Benzenes and Polycyclic Aromatic Compounds. J. Phys. Chem. B 2013, 117, 273. <https://doi.org/10.1021/jp307328x>
  • Huang Liangliang, Bandosz Teresa, Joshi Kaushik L., van Duin Adri C. T., Gubbins Keith E.: Reactive adsorption of ammonia and ammonia/water on CuBTC metal-organic framework: A ReaxFF molecular dynamics simulation. The Journal of Chemical Physics 2013, 138. <https://doi.org/10.1063/1.4774332>
  • Petit Camille, Huang Liangliang, Jagiello Jacek, Kenvin Jeffrey, Gubbins Keith E., Bandosz Teresa J.: Toward Understanding Reactive Adsorption of Ammonia on Cu-MOF/Graphite Oxide Nanocomposites. Langmuir 2011, 27, 13043. <https://doi.org/10.1021/la202924y>
  • Engin Cemal, Merker Thorsten, Vrabec Jadran, Hasse Hans: Flexible or rigid molecular models? A study on vapour–liquid equilibrium properties of ammonia. Molec Phys 2011, 109, 619. <https://doi.org/10.1080/00268976.2010.542894>