Collect. Czech. Chem. Commun. 2011, 76, 327-341
https://doi.org/10.1135/cccc2010151
Published online 2011-03-23 23:02:39

Potential energy curve of N2 revisited

Vladimír Špirkoa,*, Xiangzhu Lib and Josef Paldusb

a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Center for Biomolecules and Complex Molecular Systems, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
b Department of Applied Mathematics, University of Waterloo, Waterloo, ON Canada N2L 3G1

References

1. Merritt J. M., Bondybey V. E., Heaven M. C.: Science 2009, 324, 1548. <https://doi.org/10.1126/science.1174326>
2. Li X., Paldus J.: J. Chem. Phys. 2008, 129, 174101. <https://doi.org/10.1063/1.2999560>
3. McWeeny R.: Methods of Molecular Quantum Mechanics, 2nd ed. Academic, London 1989.
4. Paldus J., Li X. in: Correlation and Localization (P. R. Surján, Ed.), p. 1. Springer, Berlin 1999.
5. Paldus J. in: Handbook of Molecular Physics and Quantum Chemistry (S. Wilson, P. F. Bernath and R. McWeeny, Eds), Vol. 2: Molecular Electronic Structure, p. 272. Wiley, Chichester 2003.
6. Shavitt I., Bartlett R. J.: Many-Body Methods in Chemistry and Physics. Cambridge University Press, Cambridge 2009.
7. Shavitt I. in: Methods of Electronic Structure Theory (H. F. Schaefer III, Ed.), p. 189. Plenum, New York 1977.
8. Bruna P. J., Peyerimhoff S. D.: Adv. Chem. Phys. 1987, 67, 1. <https://doi.org/10.1002/9780470142936.ch1>
9. Langhoff S. R., Davidson E. R.: Int. J. Quantum Chem. 1974, 8, 61. <https://doi.org/10.1002/qua.560080106>
10. Bruna P. J., Peyerimhoff S. D., Buenker R. J.: Chem. Phys. Lett. 1981, 72, 278. <https://doi.org/10.1016/0009-2614(80)80291-0>
11. Meissner L.: Chem. Phys. Lett. 1996, 263, 351. <https://doi.org/10.1016/S0009-2614(96)01218-3>
12. Meissner L., Grabowski I.: Chem. Phys. Lett. 1999, 300, 53. <https://doi.org/10.1016/S0009-2614(98)01332-3>
13. Meissner L., Nooijen M.: Chem. Phys. Lett. 2000, 316, 501. <https://doi.org/10.1016/S0009-2614(99)01209-9>
14. Paldus J., Li X.: Adv. Chem. Phys. 1999, 110, 1. <https://doi.org/10.1002/9780470141694.ch1>
15. Bartlett R. J., Musiał M.: Rev. Mod. Phys. 2007, 79, 291. <https://doi.org/10.1103/RevModPhys.79.291>
16. Evangelista F. A., Allen W. D., Schaefer H. F., III: J. Chem. Phys. 2006, 125, 154113. <https://doi.org/10.1063/1.2357923>
17. Li X., Paldus J.: J. Chem. Phys. 2009, 131, 114103. <https://doi.org/10.1063/1.3225203>
18. Gdanitz R. J.: Chem. Phys. Lett. 1998, 283, 253. <https://doi.org/10.1016/S0009-2614(97)01392-4>
19. Li X., Paldus J.: J. Chem. Phys. 2008, 129, 054104. <https://doi.org/10.1063/1.2961033>
20. Li X., Paldus J.: J. Chem. Phys. 1997, 107, 6257. <https://doi.org/10.1063/1.474289>
21. Li X., Peris G., Planelles J., Rajadell F., Paldus J.: J. Chem. Phys. 1997, 107, 90. <https://doi.org/10.1063/1.474355>
22. Li X., Paldus J.: J. Chem. Phys. 1998, 108, 637. <https://doi.org/10.1063/1.475425>
23. Paldus J., Planelles J.: Theor. Chim. Acta 1994, 89, 13. <https://doi.org/10.1007/BF01167279>
24. Li X., Paldus J.: J. Chem. Phys. 2006, 124, 174101. <https://doi.org/10.1063/1.2194543>
25. Li X., Paldus J.: J. Chem. Phys. 2006, 125, 164107. <https://doi.org/10.1063/1.2361295>
26. Paldus J., Li X.: Collect. Czech. Chem. Commun. 2007, 72, 100. <https://doi.org/10.1135/cccc20070100>
27. Le Roy R. J., Huang Y., Jary C.: J. Chem. Phys. 2006, 125, 164310. <https://doi.org/10.1063/1.2354502>
28. Meuwly M., Hutson J. M.: J. Chem. Phys. 1999, 110, 8338. <https://doi.org/10.1063/1.478744>
29. Castillo-Charaá J., Lucchese R. R., Bewan J. W.: J. Chem. Phys. 2001, 115, 899. <https://doi.org/10.1063/1.1379337>
30. Jenč F., Plíva J.: Collect. Czech. Chem. Commun. 1962, 28, 1449. <https://doi.org/10.1135/cccc19631449>
31. Jenč F.: Adv. At. Mol. Phys. 1983, 19, 265. <https://doi.org/10.1016/S0065-2199(08)60255-9>
32. Jenč F., Brandt B. A., Špirko V., Bludský O.: Phys. Rev. A 1993, 48, 1319. <https://doi.org/10.1103/PhysRevA.48.1319>
33. Bludský O., Juřek M., Špirko V., Brandt B. A., Jenč J.: J. Mol. Spectrosc. 1995, 169, 555. <https://doi.org/10.1006/jmsp.1995.1046>
34. Patkowski K., Špirko V., Szalewicz K.: Science 2009, 326, 1382. <https://doi.org/10.1126/science.1181017>
35. Soldán P., Špirko V.: J. Chem. Phys. 2007, 127, 121101. <https://doi.org/10.1063/1.2790004>
36. Li X., Paldus J.: J. Chem. Phys. 2000, 113, 9966. <https://doi.org/10.1063/1.1323260>
37. Špirko V.: Collect. Czech. Chem. Commun. 2005, 70, 731. <https://doi.org/10.1135/cccc20050731>
38. Lino da Silva M., Guerra V., Loureiro J., Sá P. A.: Chem. Phys. 2008, 348, 187. <https://doi.org/10.1016/j.chemphys.2008.02.048>
39. Janzen A. R., Aziz R. A.: J. Chem. Phys. 1997, 107, 914. <https://doi.org/10.1063/1.474444>
40. Xie J., Poirier B., Gellene G. I.: J. Chem. Phys. 2005, 122, 184310. <https://doi.org/10.1063/1.1891685>
41. Li X., Paldus J.: J. Chem. Phys. 2008, 128, 144119. <https://doi.org/10.1063/1.2868768>
42. Li X., Paldus J.: J. Chem. Phys. 2008, 128, 144118. <https://doi.org/10.1063/1.2868758>
43. Li X., Paldus J.: Chem. Phys. Lett. 1998, 286, 145. <https://doi.org/10.1016/S0009-2614(97)01132-9>
44. Das S., Mukherjee D., Kállay M.: J. Chem. Phys. 2010, 132, 074103. <https://doi.org/10.1063/1.3310288>
45. Bytautas L., Ruedenberg K.: J. Chem. Phys. 2009, 130, 204101. <https://doi.org/10.1063/1.3139114>
46. Bytautas L., Matsunaga N., Ruedenberg K.: J. Chem. Phys. 2010, 132, 074307. <https://doi.org/10.1063/1.3298376>