Collect. Czech. Chem. Commun.
2011, 76, 585-603
https://doi.org/10.1135/cccc2011047
Published online 2011-04-29 13:19:34
Effects of micro-hydration in proton transfer from H2S·NO+ complex to water: Ab initio and molecular dynamics study
Ivan Černušáka,*, Jozef Federiča, Pavel Jungwirthb and Milan Uhlárc
a Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. and Center for Biomolecules and Complex Molecular Systems, 166 10 Prague 6, Czech Republic
c Institute of Physics, Faculty of Philosophy and Science, Silesian University, Bezručovo nám. 13, 746 01 Opava 1, Czech Republic
References
1. Scheiner S.: Hydrogen bonding. A Theoretical Perspective. Oxford University Press, New York 1997.
2. Mon. Chem. 1999, 130, 947.
P., Wolschann P.:
3. Grabowski S. J. (Ed.): Hydrogen Bonding – New Insights, Vol. 3, p. 520. Springer Netherlands, Dordrecht 2006.
4. Theor. Chem. Acc. 2002, 108, 325.
P., Havlas Z:
5. J. Chem. Phys. 1992, 97, 6628.
< O., Yanez M., Elguero J.: https://doi.org/10.1063/1.463666>
6. J. Am. Chem. Soc. 1972, 94, 2378.
< R., Weidemann E. G., Pfeiffer H., Zundel G.: https://doi.org/10.1021/ja00762a032>
7. Trends Phys. Chem. 1992, 3, 129.
G.:
8. Manahan S. E.: Environmental Chemistry., Chap. 9, 7th ed. CRC Press LLC, Boca Raton 2000.
9. Wayne R. P.: Chemistry of Atmospheres, 3rd ed. Oxford University Press, New York 2000.
10. Rees M. H.: Physics and Chemistry of the Upper Atmosphere. Cambridge University Press, Cambridge 1989.
11. Nature 1998, 391, 471.
< D. E., Villarin J. T., Black R. X., Davis C. A.: https://doi.org/10.1038/35112>
12. Phys. Rev. 1969, 187, 286.
< W. C., Puckett L. J.: https://doi.org/10.1103/PhysRev.187.286>
13. J. Geophys. Res., [Space Phys.] 1969, 74, 2217.
< F. C., Ferguson E. E.: https://doi.org/10.1029/JA074i009p02217>
14. J. Geophys. Res., [Space Phys.] 1969, 74, 5743.
< E. E., Fehsenfeld F. C.: https://doi.org/10.1029/JA074i024p05743>
15. Ferguson E. E., Fehsenfeld F. C., Albritton D. L. in: Gas-Phase Ion Chemistry (M. T. Bowers, Ed.), Vol. 1, p. 45. Academic Press, New York 1979.
16. Ann. Geophys. 1984, 2, 83.
E., Herrman U.:
17. Chem. Phys. 1997, 218, 243.
< P., Dyke J. M., Wright T. G.: https://doi.org/10.1016/S0301-0104(97)00080-3>
18. J. Chem. Phys. 1991, 95, 6800.
< K., Yamabe S.: https://doi.org/10.1063/1.461518>
19. J. Chem. Phys. 1994, 100, 7153.
< J.-H., Kuwata K. T., Haas B.-M., Cao Y., Johnson M. S., Okumura M.: https://doi.org/10.1063/1.466914>
20. Phys. Chem. Chem. Phys. 2011, 13, 1590.
< T., Nagaoka M., Koseki S.: https://doi.org/10.1039/c0cp01077d>
21. J. Chem. Phys. 1971, 54, 3817.
< D. B., Fehsenfeld F. C., Schmeltekopf E. E., Ferguson E. E.: https://doi.org/10.1063/1.1675432>
22. Ann. Geophys. 1983, 1, 61.
L.:
23. Ann. Geophys. 1983, 1, 75.
R. G., Castleman J. A. W.:
24. Ann. Geophys. 1983, 1, 149.
E.:
25. Ann. Geophys. 1983, 1, 173.
G., Chatel A.:
26. Planet. Space Sci. 1992, 40, 255.
< E.: https://doi.org/10.1016/0032-0633(92)90064-U>
27. J. Chem. Phys. 1998, 108, 2015.
< L., Cheng H.-P.: https://doi.org/10.1063/1.475580>
28. Chem. Phys. Lett. 1998, 292, 193.
< H.: https://doi.org/10.1016/S0009-2614(98)00686-1>
29. Int. J. Mass Spectrom. 2000, 203, 93.
H.:
30. Geotimes 2005, 50, 24.
C.:
31. Mol. Phys. 2008, 106, 841.
< S. M., Pliego J. R., Vandresen S.: https://doi.org/10.1080/00268970801971384>
32. Science 1983, 222, 1018.
< J. P., Finnegan D. L., Zoller W. H., Hart M. A., Moyers J. L.: https://doi.org/10.1126/science.222.4627.1018>
33. Seinfeld J. H., Pandis S. N.: Atmospheric Chemistry and Physics – From Air Pollution to Climate Change, 2nd ed. John Wiley and Sons, Inc., New York 2006.
34. Atmos. Chem. Phys. 2007, 7, 1441.
< A., Franco A., von Glasow R., Allen A. G., D’Alessandro W., Mather T. A., Pyle D. M., Valenza M.: https://doi.org/10.5194/acp-7-1441-2007>
35. Proc. Nat. Acad. Sci. U.S.A. 1963, 50, 200.
< A. R.: https://doi.org/10.1073/pnas.50.2.200>
36. J. Phys. Chem. A 1997, 101, 9351.
< S. T., Viggiano A. A., Morris R. A.: https://doi.org/10.1021/jp972106v>
37. Mol. Phys. 2005, 103, 2309.
< M., Pitonak M., Černušák I.: https://doi.org/10.1080/00268970500174322>
38. Collect. Czech. Chem. Commun. 2007, 72, 1122.
< M., Černušák I.: https://doi.org/10.1135/cccc20071122>
39. Phys. Rev. A 1988, 38, 3098.
< A. D.: https://doi.org/10.1103/PhysRevA.38.3098>
40. Phys. Rev. B 1988, 37, 785.
< C., Yang W., Parr R. G.: https://doi.org/10.1103/PhysRevB.37.785>
41. Chem. Phys. Lett. 1989, 157, 200.
< B., Savin A., Stoll H., Preuss H.: https://doi.org/10.1016/0009-2614(89)87234-3>
42. Phys. Chem. Chem. Phys. 2008, 10, 6615.
< J. D., Head-Gordon M.: https://doi.org/10.1039/b810189b>
43. J. Chem. Phys. 2008, 128, 15.
< J. D., Head-Gordon M.: https://doi.org/10.1063/1.2834918>
44. Bartlett R. J., Stanton J. F. in: Reviews in Computational Chemistry (K. B. Lipkowitz and D. B. Boyd, Eds), Vol. 5, p. 65. VCH Publishers, Inc., New York 1994;.
45. J. Chem. Phys. 1985, 83, 4041.
< M., Noga J., Cole S. J., Bartlett R. J.: https://doi.org/10.1063/1.449067>
46. Urban M., Černušák I., Kellö V., Noga J.: Methods in Computational Chemistry. Electron Correlation in Atoms and Molecules, Vol. 1. Plenum Press, New York 1987.
47. Chem. Phys. Lett. 1989, 157, 479.
< K., Trucks G. W., Pople J. A., Headgordon M. L.: https://doi.org/10.1016/S0009-2614(89)87395-6>
48. Stanton J. F., Gauss J., Watts J. D., Nooijen M., Oliphant N., Perera S. A., Szalay P. G., Lauderdale W. J., Kucharski S. A., Gwaltney S. R., Beck S., Balkova A., Bernholdt D. E., Baeck K. K., Roczyczko P., Sekino H., Hober C., Bartlett R. J.: ACES II, A Program Product of the Quantum Theory Project. University of Florida, Gainesville (FL) 2007. Integral packages included are: VMOL (J. Almlöf and P. R. Taylor); VPROPS (P. Taylor); ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen and P. R. Taylor).
49. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Montgomery J. A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J.: Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford (CT) 2009.
50. J. Chem. Phys. 1989, 90, 1007.
< J. T. H.: https://doi.org/10.1063/1.456153>
51. Phys. Rev. Lett. 1985, 55, 2471.
< R., Parrinello M.: https://doi.org/10.1103/PhysRevLett.55.2471>
52. Comput. Phys. Commun. 2005, 167, 103.
< J., Krack M., Mohamed F., Parrinello M., Chassaing T., Hutter J.: https://doi.org/10.1016/j.cpc.2004.12.014>
53. Theor. Chem. Acc. 1999, 103, 124.
G., Hutter J., Parrinello M.:
54. VandeVondele J., Hutter J.: J. Chem. Phys. 2007, 127.
55. Phys. Rev. B 1996, 54, 1703.
< S., Teter M., Hutter J.: https://doi.org/10.1103/PhysRevB.54.1703>
56. J. Chem. Phys. 2006, 125, 074105.
< L., Deutsch T., Neelov A., Goedecker S., Beylkin G.: https://doi.org/10.1063/1.2335442>
57. J. Chem. Phys. 1995, 103, 150.
< M., Laasonen K., Sprik M., Parrinello M.: https://doi.org/10.1063/1.469654>
58. J. Phys. Chem. 1995, 99, 5749.
< M., Laasonen K., Sprik M., Parrinello M.: https://doi.org/10.1021/j100016a003>
59. Nature 1999, 397, 601.
< D., Tuckerman M. E., Hutter J., Parrinello M.: https://doi.org/10.1038/17579>
60. J. Phys. Chem. 1987, 91, 5203.
< M., Huber J. R., Ha T.-K.: https://doi.org/10.1021/j100304a014>