Collect. Czech. Chem. Commun. 2011, 76, 947-956
https://doi.org/10.1135/cccc2011042
Published online 2011-07-07 13:15:49

Intramolecular addition of oxyradicals to benzene rings: A DFT study

Götz Bucher

WestCHEM, School of Chemistry, University of Glasgow, Joseph-Black-Building, Glasgow G12 8QQ, UK

References

1. Linker T., Schmittel M.: Radikale und Radikalionen in der Organischen Synthese. Wiley-VCH, Weinheim 1999.
2. Bowman W. R., Fletcher A. J., Potts G. B. S.: J. Chem. Soc., Perkin Trans. 1 2002, 2747. <https://doi.org/10.1039/b108582b>
3. Zimmerman J., Halloway A., Sibi M.: Free Radical Cyclizations. In: Handbook of Cyclization Reactions, Vol. 2, pp. 1099–1148. Wiley-VCH, Weinheim 2010.
4. Beckwith A. L. J., Storey J. M. D.: J. Chem. Soc., Chem. Commun. 1995, 977. <https://doi.org/10.1039/c39950000977>
5. Crich D., Hwang J.: J. Org. Chem. 1998, 63, 2765. <https://doi.org/10.1021/jo972197s>
6. Crich D., Sannigrahi M.: Tetrahedron 2002, 58, 3319. <https://doi.org/10.1016/S0040-4020(02)00288-0>
7. Pan X., Schuchmann M. N., v. Sonntag C.: J. Chem. Soc., Perkin Trans. 2 1993, 289. <https://doi.org/10.1039/p29930000289>
8. Nicolaescu A. R., Wiest O., Kamat P. V.: J. Phys. Chem. A 2003, 107, 427. <https://doi.org/10.1021/jp027112s>
9. Raoult S., Rayez M., Rayez J., Lesclaux R.: PhysChemChemPhys 2004, 6, 2245.
10. Seta T., Nakajima M., Miyoshi A.: J. Phys. Chem. A 2006, 110, 5081. <https://doi.org/10.1021/jp0575456>
11. Chen C., Bozzelli J. W., Farrell J. T.: J. Phys. Chem. A 2004, 108, 4632. <https://doi.org/10.1021/jp0312823>
12. Glowacki D. R., Wang L., Pilling M. T.: J. Phys. Chem. A 2009, 113, 5385. <https://doi.org/10.1021/jp9001466>
13. Baignée A., Howard J. A., Scaiano J. C., Stewart L. C.: J. Am. Chem. Soc. 1983, 105, 6102. <https://doi.org/10.1021/ja00357a024>
14. Bucher G.: J. Phys. Chem. A 2008, 112, 5411. <https://doi.org/10.1021/jp711266z>
15. Smith M. J., Bucher G.: J. Phys. Chem. A 2010, 114, 10712. <https://doi.org/10.1021/jp105962r>
16. Zhao Y., Schultz N. E., Truhlar D. G.: J. Chem. Theory Comput. 2006, 2, 364. <https://doi.org/10.1021/ct0502763>
17. Bucher G.: Eur. J. Org. Chem. 2010, 1070.
18. Bucher G.: Eur. J. Org. Chem. 2009, 4340. <https://doi.org/10.1002/ejoc.200900378>
19. Schreiner P. R.: Angew. Chem. Int. Ed. 2007, 46, 4217. <https://doi.org/10.1002/anie.200700386>
20. Ditchfield R., Hehre W. J., Pople J. A.: J. Chem. Phys. 1971, 54, 724. <https://doi.org/10.1063/1.1674902>
21. Tomasi J., Mennucci B., Cammi R.: Chem. Rev. 2005, 105, 2999. <https://doi.org/10.1021/cr9904009>
22. Miertuš S., Scrocco E., Tomasi J.: Chem. Phys. 1981, 55, 117. <https://doi.org/10.1016/0301-0104(81)85090-2>
23. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J.: Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford (CT) 2009.
24. It is noted that the computational method used for obtaining the free energies uses a smaller basis set than the method used to calculate the electronic energies (6-31G(d) as opposed to 6-311++G(d,p)) and is therefore anticipated to be less accurate.
25. Buszek R. J., Sinha A., Francisco J. S.: J. Am. Chem. Soc. 2011, 133, 2013. <https://doi.org/10.1021/ja1039874>