Caterina Fraschetti, Marco Pierini,* Claudio Villani, Francesco Gasparrini, Antonello Filippi, and Maurizio Speranza*

GAS-PHASE STRUCTURE AND RELATIVE STABILITY OF PROTON-BOUND HOMO- AND HETEROCHIRAL CLUSTERS OF TETRA-AMIDE MACROCYCLES WITH AMINES.

SUPPORTING INFORMATION

Figure 1S. Comparative plots of the relative abundances of the products from CID of the homochiral $[(M^{X})_{2} \cdot H \cdot B]^{+}$ (X=H;D) complexes from ESI of the (*S*)- $M^{H}/(R)$ - M^{D}/B =CH₃NH₂ mixture: *i*- open circles: $[((S)-M^{H})_{2} \cdot H]^{+}$ vs. $[(S)-M^{H} \cdot H]^{+}$; full circles: $[((R)-M^{D})_{2} \cdot H]^{+}$ vs. $[(R)-M^{D} \cdot H]^{+}$; open squares: $[((S)-M^{H} \cdot H \cdot B]^{+}$ vs. $[(S)-M^{H} \cdot H]^{+}$; full squares: $[(R)-M^{D} \cdot H \cdot B]^{+}$ vs. $[(R)-M^{D} \cdot H]^{+}$. The upper broken arrows denote the collision energy (E_{lab}) range for $[((S)-M^{H})_{2} \cdot H \cdot B]^{+}$ and the lower ones that for $[((R)-M^{D})_{2} \cdot H \cdot B]^{+}$ (see Table 1).

Figure 2S. Comparative plots of the relative abundances of the products from CID of the homochiral $[(M^X)_2 \cdot H \cdot B]^+$ (X=H;D) complexes from ESI of the (*S*)- $M^H/(R)$ - $M^D/B=(CH_3)_2NH$ mixture: *i*- open circles: $[((S)-M^H)_2 \cdot H]^+$ vs. $[(S)-M^H \cdot H]^+$; full circles: $[((R)-M^D)_2 \cdot H]^+$ vs. $[(R)-M^D \cdot H]^+$; open squares: $[((S)-M^H \cdot H \cdot B]^+$ vs. $[(S)-M^H \cdot H]^+$; full squares: $[(R)-M^D \cdot H \cdot B]^+$ vs. $[(R)-M^D \cdot H]^+$. The upper broken arrows denote the collision energy (E_{lab}) range for $[((S)-M^H)_2 \cdot H \cdot B]^+$ and the lower ones that for $[((R)-M^D)_2 \cdot H \cdot B]^+$ (see Table 2).

Figure 3S. Comparative plots of the relative abundances of the products from CID of the homochiral $[(M^X)_2 \cdot H \cdot B]^+$ (X=H;D) complexes from ESI of the (*S*)- $M^H/(R)$ - $M^D/B=(S)$ -(-)-1-phenylethylamine mixture: *i*- open circles: $[((S)-M^H)_2 \cdot H]^+$ vs. $[(S)-M^H \cdot H]^+$; full circles: $[((R)-M^D)_2 \cdot H]^+$ vs. $[(R)-M^D \cdot H]^+$; open squares: $[((S)-M^H \cdot H \cdot B]^+$ vs. $[(S)-M^H \cdot H]^+$; full squares: $[(R)-M^D \cdot H \cdot B]^+$ vs. $[(R)-M^D \cdot H]^+$.. The upper broken arrows denote the collision energy (E_{lab}) range for $[((S)-M^H)_2 \cdot H \cdot B]^+$ and the lower ones that for $[((R)-M^D)_2 \cdot H \cdot B]^+$ (see Table 3).