SUPPLEMENTARY MATERIAL

¹⁷O NMR study of *ortho* and *alkyl* substituent effects in substituted phenyl and alkyl esters of benzoic acid

Vilve Nummert,¹ Vahur Mäemets,² Mare Piirsalu,³ Signe Vahur⁴ and Ilmar A. Koppel⁵.

e-mail: ¹vilve.nummert@ut.ee, ²vahur.maemets@ut.ee, ³mare.piirsalu@ut.ee, ⁴signe.vahur@ut.ee,

⁵<u>ilmar.koppel@ut.ee</u>

Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia

1. EXPERIMENTAL

a. Synthesis of compounds

The preparation procedure and characteristics for the most *ortho-*, *meta-*, and *para*-substituted phenyl esters of benzoic acids, $C_6H_5CO_2C_6H_4$ -X, and alkyl esters of benzoic acid, $C_6H_5CO_2R_6$, have been previously described^{9, 51-55}.

The phenyl benzoates, $C_6H_5CO_2C_6H_4$ -X, (X = 2-SO₂CH₃, 2-COCH₃, 2-CF₃, 3-Cl, 4-SO₂CH₃, 4-CF₃) were prepared by the addition of benzoyl chloride to the corresponding substituted phenol in pyridine with stirring at 0 °C (the Einhorn method)⁵⁶. The crude esters were recrytallized from aqueous ethanol. 2-(Methylsulfonyl)phenyl benzoate: yield 42 %, m.p. 172-173 °C. 2-Acetylphenyl benzoate: yield 66 %, m.p. 84-86 °C, Reference⁵⁷, m.p. 87-88 °C. 2-(Trifluoromethyl)phenyl benzoate: yield 56 %, m.p. 39-40 °C, Reference⁵, b.p. 125-126 °C. 3-Chlorophenyl benzoate: yield 73 %, m.p. 70-71 °C, Reference⁵⁸, 70 °C. 4-(Methylsulfonyl)phenyl benzoate: yield 61 %, m.p. 155-156 °C. 4-(Trifluoromethyl)phenyl benzoate: yield 67 %, m.p. 113-114 °C. The phenyl benzoates, $C_6H_5CO_2C_6H_4$ -X, (X = 3-Br, 3-N(CH₃)₂, 3-CF₃, 2-Br) and 2,6-dimethylphenyl benzoate, were prepared by addition the benzoyl chloride to the mixture of the corresponding substituted phenol in aqueous 10 % sodium hydroxide (the Schotten-Baumann method). 3-Bromophenyl benzoate: yield 54 %, m.p. 85-86 °C, Reference²⁷, m.p. 83-85 °C. 3-(Dimethylamino)phenyl benzoate: yield 55 %, m.p. 92-93 °C, Reference⁵⁹, m.p. 94 °C. 3-(Trifluoromethyl)phenyl benzoate: yield 43 %, b.p. 118-120 °C/1.9 mbar. 2-Bromophenyl benzoate: yield 24 %, b.p. 148-149 °C/1.8 mbar. 2,6-Dimethylphenyl benzoate: yield 49 %, m.p. 41-42 °C, Reference⁶⁰, m.p. 42-42.8 °C. 2,6-Dinitrophenyl benzoate was synthesized by the addition of the thionyl chloride to the mixture of benzoic acid and 2,6-dinitrophenol in pyridine with stirring at 0 °C.⁶¹ 2,6-Dinitrophenyl benzoate: yield 54 %, m.p. 116-117 °C, Reference⁶², m.p. 112 °C. 2,2,2-Trichloroethyl benzoate¹² was purified by distillation, b.p. 108 °C/2.2 mbar.

b. ¹H and ¹³C NMR spectra of phenyl benzoates

Purity of synthesized phenyl benzoates, $C_6H_5CO_2C_6H_4X$ (X = 2-SO₂CH₃, 2-COCH₃, 2-CF₃, 2-Br, 2,6-(CH₃)₂, 2,6-(NO₂)₂, 3-Cl, 3-Br, 3-N(CH₃)₂, 3-CF₃, 4-SO₂CH₃, 4-CF₃) and 2,2,2-trichloroethyl benzoate was confirmed by ¹H and ¹³C NMR spectroscopy in deuterated chloroform at 25 °C.

2-(Methylsulfonyl)phenyl benzoate

¹H NMR: 8.24 m, 2H (H-2,6); 7.55 t, 2H (H-3,5) ${}^{3}J_{av}$ = 7.6; 7.65-7.78 m, 2H (H-4,12); 8.10 m, 1H (H-10); 7.44-7.51 m, 2H (H-11,13), 3.16 s, 3H (H-14). ¹³C NMR: 129.00 (C-1); 130.47 (C-2,6); 128.90 (C-3,5); 134.13 (C-4); 164.37 (C-7); 148.99 (C-8); 133.12 (C-9); 130.07 (C-10); 126.50 (C-11); 135.03 (C-12); 124.80 (C-13); 44.01 (C-14).

2-Acetylphenyl benzoate

¹H NMR: 8.21 m, 2H (H-2,6); 7.46-7.68 m, 4H (H-3,4,5,12); 7.85 dd, 1H (H-10), ${}^{3}J = 7.8$, ${}^{4}J = 1.8$; 7.34 dt, 1H (H-11), ${}^{3}J_{av} = 7.6$, ${}^{4}J = 1.3$; 7.22 dd, 1H (H-13) 2.53 s, 3H (H-15). ${}^{13}C$ NMR: 129.33 (C-1); 130.28 (C-2,6); 128.69 (C-3,5); 133.78 (C-4); 165.10 (C-7); 149.38 (C-8); 131.38 (C-9); 130.23 (C-10); 126.14 (C-11); 133.33 (C-12); 123.90 (C-13); 197.40 (C-14); 29.70 (C-15).

2-(Trifluoromethyl)phenyl benzoate

¹H NMR: 7.2-7.7 m, 7H (H-3,4,5,10,11,12,13); 8.21 m, 2H (H-2,6). ¹³C NMR: 129.10 (C-1); 130.46 (C-2,6); 128.76 (C-3,5); 133.93 (C-4); 164.52 (C-7); 148.70 q (C-8), ${}^{3}J_{C-F} = 2.0$; 123.20 q (C-9), ${}^{2}J_{C-F} = 31.2$; 127.00 q (C-10), ${}^{3}J_{C-F} = 5.0$; 125.92 (C-11); 133.05 (C-12); 124.55 (C-13); 123.30 q (C-14), ${}^{1}J_{C-F} = 273.0$.

2-Bromophenyl benzoate

¹H NMR: 8.23 m, 2H (H-2,6); 7.47 m, 2H (H-3,5); 7.56-7.64 m, 2H (H-4, 10); 7.10 ddd, 1H (H-11), ${}^{3}J = 7.9$, ${}^{3}J = 7.0$, ${}^{4}J = 2.0$; 7.31 ddd, 1H (H-12), ${}^{3}J = 8.0$, ${}^{3}J = 7.0$, ${}^{4}J = 1.5$; 7.25 ddd, 1H (H-13), ${}^{3}J = 8.0$, ${}^{4}J = 2.0$, ${}^{5}J = 0.5$. ¹³C NMR: 129.10 (C-1); 130.33 (C-2,6,10); 128.61 (C-3,5); 133.36 (C-4); 164.13 (C-7); 148.53 (C-8); 116.27 (C-9); 133.75 (C-10); 127.26 (C-11); 128.43 (C-12); 123.92 (C-13).

2,6-Dimethylphenyl benzoate

¹H NMR: 8.25 m, 2H (H-2,6); 7.50 m, 2H (H-3,5); 7.62 m, 1H (H-4), ${}^{3}J = 7.3$; 7.09 br s, 2H (H-10, 12) 7.08 br s, 1H (H-11).

¹³C NMR: 129.59 (C-1); 130.18 (C-2,6); 128.65 (C-3,5,10,12); 133.51 (C-4); 164.31 (C-7); 148.54 (C-8); 130.43 (C-9,13); 125.90 (C-11); 16.34 (C-14).

2,6-Dinitrophenyl benzoate

¹H NMR: 7.50-7.74 m, 4H (H-3,4,5,11); 8.17 m, 2H (H-2,6); 8.34 d, 2H (H-10,12), ${}^{3}J = 8.2$. ¹³C NMR: 127.39 (C-1); 129.94 (C-2,6); 128.91 (C-3,5); 134.77 (C-4); 163.21 (C-7); 139.03 (C-8); 144.03 (C-9,13); 130.86 (C-10,12); 126.61 (C-11).

3-Chlorophenyl benzoate

¹H NMR: 8.18 m, 2H (H-2,6); 7.50 m, 2H (H-3,5); 7.64 m, 1H (H-4); 7.22-7.29 m, 2H (H-9,11); 7.35 m, 1H (H-12); 7.13 ddd, 1H (H-13), ${}^{3}J = 7.9 {}^{4}J = 1.5 {}^{4}J = 2.1$. ¹³C NMR: 129.32 (C-1); 130.24 (C-2,6); 128.67 (C-3,5); 133.79 (C-4); 164.71 (C-7); 151.63 (C-8); 122.46 (C-9); 134.85 (C-10); 126.16 (C-11); 130.24 (C-12); 120.15.

3-Bromophenyl benzoate

¹H NMR: 8.17 m, 2H (H-2,6); 7.49 m, 2H (H-3,5); 7.63 m, 1H (H-4) ${}^{3}J = 7.3$; 7.37-7.42 m, 2H (H-9,11); 7.28 t, 1H (H-12), ${}^{3}J_{av} = 8.2$; 7.16 ddd, 1H (H-13), ${}^{3}J = 8.1$, ${}^{4}J = 1.5$, ${}^{4}J = 2.0$. ¹³C NMR: 129.27 (C-1); 130.22 (C-2,6); 128.65 (C-3,5); 133.78 (C-4); 164.66 (C-7); 151.64 (C-8); 125.29 (C-9); 122.46 (C-10); 129.05 (C-11); 130.48 (C-12); 120.61 (C-13).

14

3-(Trifluoromethyl)phenyl benzoate

¹H NMR: 8.18 m, 2H (H-2,6); 7.37-7.51 m, 6H (H-3,5,9,11,12,13); 7.62 m, 1H (H-4) ${}^{3}J =$ 7.3.

¹³C NMR: 129.30 (C-1); 130.34 (C-2,6); 128.79 (C-3,5); 133.98 (C-4); 164.78 (C-7); 151.40 (C-8); 119.18 (C-9), ${}^{3}J_{F-C} = 3.9$; 132.25 (C-10), ${}^{2}J_{F-C} = 33.2$; 122.72 (C-11), ${}^{3}J_{F-C} = 3.8$; 130.14 (C-12); 125.57 (C-13), ${}^{5}J_{F-C} = 1.2$; 123.81 (C-14), ${}^{1}J_{F-C} = 272.4$.

3-(Dimethylamino)phenyl benzoate

¹H NMR: 8.20 m, 2H (H-2,6); 7.48 m, 2H (H-3,5); 7.61 m, 1H (H-4) ${}^{3}J = 7.3$; 6.51-6.64 m, 3H (H-9,11,13); 7.26 t, 1H (H-12), ${}^{3}J_{av} = 8.0$; 2.94 s, 6H (H-14).

¹³C NMR: 130.18 (C-1); 130.17 (C-2,6); 128.52 (C-3,5); 133.34 (C-4); 165.24 (C-7); 152.27 (C-8); 105.75 (C-9); 151.92 (C-10); 110.09 (C-11); 129.69 (C-12); 109.47 (C-13); 40.44 (C-14).

4-(Methylsulfonyl)phenyl benzoate

CD₃CN, 40°C, shifts relative to the solvent residual peak ¹H NMR: 8.20 m, 2H (H-2,6); 7.50-7.63 m, 4H (H-3,5,9,13); 7.73 m, 1H (H-4), ${}^{3}J = 7.7$, ${}^{4}J$ = 1.3; 8.03 d, 2H (H-10,12), ${}^{3}J = 8.7$; 3.10 s, 3H (H-14). ¹³C NMR: 130.36 (C-1); 131.21 (C-2,6); 130.04 (C-3,5); 135.25 (C-4); 165.72 (C-7); 156.29 (C-8); 124.09 (C-9,13); 130.22 C-10,12); 139.88 (C-11); 44.92 (C-14).

4-(Trifluoromethyl)phenyl benzoate

¹H NMR: 8.20 m, 2H (H-2,6); 7.51 m, 2H (H-3,5); 7.61-7.71 m, 3H (H-4,10,12); 7.34 d, 2H (H-9,13), ${}^{3}J = 8.5$.

¹³C NMR: 129.28 (C-1); 130.35 (C-2,6); 128.77 (C-3,5); 133.97 (C-4); 164.66 (C-7); 153.76 (C-8), ${}^{5}J_{F-C} = 1.5$; 122.32 (C-9,13); 126.91 (C-10,12), ${}^{3}J_{F-C} = 3.7$; 128.34 (C-11), ${}^{2}J_{F-C} = 32.8$; 124.07 (C-14), ${}^{1}J_{F-C} = 272.2$.

2,2,2-Trichloroethyl benzoate

¹H NMR: 8.12 m, 2H (H-2,6); 7.44 m, 2H (H-3,5); 7.58 m, 1H (H-4); 4.95 s, 2H (H-8). ¹³C NMR: 128.72 (C-1); 130.00 (C-2,6); 128.54 (C-3,5); 133.69 (C-4); 164.68 (C-7); 74.36 (C-8); 95.12 (C-9).

2-Bromoethyl benzoate (Aldrich)

¹H NMR: 8.05 m, 2H (H-2,6); 7.41 m, 2H (H-3,5); 7.54 m, 1H (H-4); 4.58 t, 2H (H-8), ${}^{3}J = 6.1$; 3.60 t, 2H (H-9), ${}^{3}J = 6.1$. ¹³C NMR: 129.75 (C-1); 129.70 (C-2,6); 128.40 (C-3,5); 133.17 (C-4); 165.87 (C-7); 64.19 (C-8); 28.83 (C-9).

2. DATA PROCESSING

The values of chemical shifts, $\delta(^{17}\text{O})$, for the carbonyl oxygen and the single-bonded oxygen in the *ortho-*, *para-* and *meta-*substituted phenyl esters of benzoic acid, C₆H₅CO₂C₆H₄-X, given in Table I were treated according to the Taft and Charton equations using the Taft's $\sigma^{\circ 63,64}$, inductive $\sigma_{I}^{64,65}$, and the resonance $\sigma^{\circ}_{R} (\sigma^{\circ}_{R} = \sigma^{\circ}_{p} - \sigma_{I})^{64,66}$ substituent constants:

$$\delta(^{17}\text{O})_{\text{para(meta)}} = \delta(^{17}\text{O})_{\text{H}} + (\rho)_{\text{para(meta)}}\sigma^{\circ}$$
(1)

$$\delta(^{17}\text{O})_{\text{para(meta)}} = \delta(^{17}\text{O})_{\text{H}} + (\rho_{\text{I}})_{\text{para(meta)}}\sigma_{\text{I}} + (\rho_{\text{R}})_{\text{para(meta)}}\sigma_{\text{R}}^{\circ}$$
(2)

In the case of *ortho* derivatives the significance of the inductive, resonance and steric effects to the substituent-induced chemical shift, δ ⁽¹⁷O), was estimated using the following Charton equations⁵⁰ (3) and (4):

$$\delta(^{17}\text{O})_{\text{ortho}} = \delta(^{17}\text{O})_{\text{H}} + (\rho_{\text{I}})_{\text{ortho}}\sigma_{\text{I}} + (\rho_{\text{R}})_{\text{ortho}}\sigma_{\text{R}}^{\circ} + \delta_{\text{ortho}}E_{\text{s}}^{\text{B}}$$
(3)

$$\delta(^{17}\text{O})_{\text{ortho}} = \delta(^{17}\text{O})_{\text{H}} + (\rho_{\text{I}})_{\text{ortho}}\sigma_{\text{I}} + (\rho_{\text{R}})_{\text{ortho}}\sigma_{\text{R}}^{\circ} + \delta_{\text{ortho}}\upsilon$$
(4)

Eqs (11) and (12) were used separately for *ortho*-substituted derivatives containing the *ortho* electron-donating +R substituents (X = H, OCH₃, CH₃, (CH₃)₂, C(CH₃)₃, F, Cl, Br)

and derivatives with the *ortho* electron-withdrawing -R substituents (X = H, NO₂, CN, CF₃, SO₂CH₃, CO₂CH₃, COCH₃, 2,6-(NO₂)₂).

To compare of the substituent effects on the carbonyl oxygen chemical shifts, δ (¹⁷O), for *ortho-*, *para-*, and *meta-*substituted phenyl and *alkyl* esters of benzoic acid (C₆H₅CO₂C₆H₄-X, C₆H₅CO₂R) with those in the corresponding carbonyl carbon ¹³C NMR chemical shifts, δ _{CO}, the infrared stretching frequencies of the carbonyl group, v_{CO}, and the Δ log k values of the alkaline hydrolysis following relationships were used:

$$\delta(^{17}\text{O})_{\text{ortho}} = \delta(^{17}\text{O})_{\text{H}} + a_{1(\text{ortho})}((\Delta\delta_{\text{CO}})_{\text{X}}(\Delta\nu_{\text{CO}})_{\text{X}}(\Delta\log k)_{\text{X}}) + a_{2(\text{ortho})}\sigma_{\text{R}}^{\circ} + a_{3(\text{ortho})}E_{\text{s}}^{\text{B}}$$
(6)

$$\delta(^{17}\text{O})_{\text{para}} = \delta(^{17}\text{O})_{\text{H}} + a_{1(\text{para})}((\Delta\delta_{\text{CO}})_{\text{X}}(\Delta\nu_{\text{CO}})_{\text{X}}(\Delta\log k)_{\text{X}}) + a_{2(\text{para})}\sigma_{\text{R}}^{\circ}$$
(7)

$$\delta(^{17}\text{O})_{\text{meta}} = \delta(^{17}\text{O})_{\text{H}} + a_{1(\text{meta})}((\Delta\delta_{\text{CO}})_{\text{X}}(\Delta\nu_{\text{CO}})_{\text{X}}(\Delta\log k)_{\text{X}}) + a_{2(\text{meta})}\sigma_{\text{R}}^{\circ}$$
(8)

$$\delta(^{17}\text{O})_{\text{Alk}} = \delta(^{17}\text{O})_{\text{CH3}} + a_{1(\text{Alk})}((\Delta\delta_{\text{CO}})_{\text{R}} (\Delta\nu_{\text{CO}})_{\text{R}} (\Delta\log k)_{\text{R}}) + a_2 E_{\text{s}}^{\text{B}}$$
(9)

In Eqs (6)-(9) $(\Delta \delta_{CO})_X = (\delta_{CO})_X - (\delta_{CO})_H$, $(\Delta v_{CO})_X = (v_{CO})_X - (\delta_{CO})_H$, and $\Delta \log k_X = \log k_H - \log k_X$. In correlations with Eqs (6)-(9) the carbonyl carbon ¹³C NMR chemical shifts, δ_{CO} , given in Reference¹², the IR stretching frequencies of the carbonyl group, v_{CO} , in Reference¹³ and the log k values for alkaline hydrolysis in water and aqueous 0.5 M Bu₄NNBr for phenyl benzoates, C₆H₅CO₂C₆H₄-X, and alkylbenzoates, C₆H₅CO₂R, in Reference^{5,10,11,51,52} were used.

The slope a_1 in Eqs (6)-(9) is the ratio of the inductive effects in the ¹⁷O NMR chemical shifts and in the corresponding process compared. In Eqs (6)-(9) $a_1 = \rho_I(^{17}O)/\rho_I(\delta_{CO})$, $\rho_I(\delta_{CO})/\rho_I(\nu_{CO})$, $\rho_I(^{17}O)/\rho_I(AH)$, $a_2 = \rho_R(\delta^{17}O) - a_1\rho_R(\delta_{CO})$, $\rho_R(\delta^{17}O) - a_1\rho_R(\nu_{CO})$, $\rho_R(\delta^{17}O) - a_1\rho_R(AH)$ and $a_3 = \delta_S(\delta^{17}O) - a_1\delta_S(\delta_{CO})$, $\delta_S(\delta^{17}O) - a_1\delta_S(\nu_{CO})$, $\delta_S(\delta^{17}O) - a_1\delta_S(\lambda_{CO})$, $\delta_S(\delta^{17}O) - a_1\delta_S(\lambda_{CO})$, the IR carbonyl stretching frequencies by (ν_{CO}), the alkaline hydrolysis is denoted by (AH), and the susceptibility to the steric factor by δ_S .

The results of correlations of the carbonyl and the single-bonded oxygen ¹⁷O NMR chemical shifts, δ (¹⁷O), for *para-*, *meta-*, and *ortho*-substituted phenyl esters of benzoic acid, C₆H₄CO₂C₆H₄-X, and alkyl benzoates, C₆H₅CO₂R, with Eqs (6)-(9) are shown in Table IV.